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THE DESIGN OF OBSERVERS
FOR THE MATCALS SYSTEM

ABSTRACT

Three observers are designed for a reduced order system that represents

the lateral system of the F4J aircraft in an automatic landing configura-

tion.

The observers are to be used in the aircraft's lateral control sys-

tem to estimate its lateral position and lateral velocity, in place of the

a-8 filter that is currently used to estimate position and velocity. Re-

sults that are obtained from simulations of the F4J aircraft lateral control

system indicate that an observer may be used to improve the system's re-

sponse.
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I. INTRODUCTION

This report gives the results of the continuation of the studies des- L
scribed in the interim report of this contract [1]. The interim report
described the design of a observer to replace the a-g filter in the flight
dynamics and control module of the F4J aircraft lateral control system.
This system is a part of the Marine Air Traffic Control and Landing System
(MATCALS).

The observer systems are compared to four different a-g systems. The
first system is the SPN-42 system [3], which is called the a-g system in
this report. The second system is the SPN-42 system with the controller
gains reduced by 50% to reduce the system noise response. The third sys-

é tem is called the ydot system, and is described in Chapter II. The fourth
' system is called the model 2 system, and has been used in mode 1 (automatic)
l landings [3]. The criteria of comparison for the systems are the radar-

I noise response and the wind response.
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II. MATCALS SYSTEM

This chapter first contains a brief description of the lateral con-
trol system of the F4J aircraft in an automatic landing configuration
(MATCALS). Next various system design criteria are developed. Finally,
two variations of this control system are presented. For the first vari-
ation, the loop gain is reduced by 50 percent. In the second variation,
it is assumed that the aircraft lateral velocity is available as a feed-

back signal.

F4J Lateral Control System

A complete description of the F4J aircraft in the MATCALS configura-
tion is given in [2]. A brief description of this system will be given
here.

- A block diagram of the F4J lateral control system is given in Figure
2-1. The block labeled "aircraft system" is the aircraft with autopi-
lots. The signal ¢(t) is the command input to the bank autopilot, and
y(t) is the lateral distance of the aircraft from the extended centerline
of the runway. The signal w(t) models the wind input to the aircraft.
The signal "radar noise" represents the measurement inaccuracies in the
determination of the aircraft position by the radar, and yR(k) is the
aircraft position as measured by the radar. The a-g filter-controller

combination is basically a proportional-integral-derivative (PID)

2-1
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controller used to compensate the closed-loop system. This combination

also contains filtering to reduce the effects of the radar noise signal.

System Design Criteria

Even though the MATCALS control systems are discrete in nature, the
important design criteria can be developed and understood by considering
the equivalent analog system. The equivalent analog system is considered
here because the derivations are much simpler.

The analog equivalent of the lateral control system of Figure 2-1
is given in Figure 2-2. 1In the controller, KI is the gain in the inte-
gral path, KP is the gain in the proportional path, and KD is the gain
in the derivative path. For the F4J lateral control system, KP = KD =
0.75, and KI = ,00333 at close range. The noise-filtering transfer func-
tion has been omitted, since it does not affect the following derivations.
The transfer function from bank command input to position output for the
aircraft is G1(s), and from wind input to position output is Gz(s). The
aircraft velocity y(t) is needed for later derivations. an(s) is the
radar. noise signal, and Ycom(s) is the system command signal.

Two transfer functions of critical importance to system operation
are the transfer function from the radar noise signal to the position
output and the one from the wind to the position output. From Figure

2-2, we see that

Yis . (KP+KI/s+KDs)G](s) (2-1)
an 5 T+ (KP¥K1/S+KDs)Gj(s) i
and !
2-3
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G,(s)
(s) - 2
fm?% T (KK 7s¥Ks )6, (5] (2-2)

It is necessary that the plane response very little to the radar

noise. However, the transfer function for the command input, Ycom’ to

position output is, from Figure 2-2,

Y(s) (KP+KI/s+KDs)G](s)

Veom(S) 1+ (Kp*K /5+K 516, (5)

(2-3)

This transfer function is identical to that of Y(s)/an(s). Thus, if
system response to the radar noise is reduced, the system response to

the system command is also reduced. For low frequencies;

(KP+KI/S+KDS)G](S) >> 1 (2-4)
S=jw
Then, from (2-1) and (2-3),
Y(s | Y(s =
= 1. (2-5)
Yeom'S l Ypnis
s=ju $=jy

Hence, to reduce noise response, we must effectively reduce system band-
width; i.e., we must reduce the frequency range over which (2-4) is
satisfied.

However, reducing the frequency range over which (2-4) is satisfied
increases the system response to wind. If (2-4) is satisfied, then for

this frequency range (2-2) becomes

Y(s . GZ(S)
W(s * TR TS+ SIE(5) (2-6)
i pTR/STRpS 1Y .
S'Jw S‘Jw
2-5




This gain is small, since the denominator is large. But, if the denomi-
nator is decreased in order to reduce the response to radar noise, the
response to wind is increased.

In summary, the lateral control system must be redesigned in such a
manner that the system response to radar noise is reduced, while the
open-loop gain as given in (2-4) remains large such that system wind re-

sponse is not degraded.

System with Reduced Gain

The first attempt to satisfy the above design specification is sim-

ply to reduce the controller gains, KP’ KI’ and X, in Figure 2-2, by 50

D
percent. This is obviously not a complete solution, since the system
wind response is increased. It has been suggested that this gain reduc-
tion will give an acceptable radar noise response, and for this reason
this system will be used here for comparison purposes. However, the wind
response for this case will probably be excessive, and thus is not accept-
able. It is then assumed that this system does give an acceptable radar
noise response, and an unacceptable wind response. The study of the sys-
tem with full gains, i.e., the SPN-42 system, gives an unacceptable radar
noise response and an acceptable wind response.

The system with full gains will be referred to as the a-8 system,
and the system with the gains reduced by 50 percent will be referred to
as the half-gain system. Thus the redesign problem is to design a system
that approaches the noise response of the half-gain system while approach-
ing the wind response of the a-8 system. Of course, adequate stability

margins must also be maintained in the redesign.

2-6
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YDOT System

A second variation on the a-8 system that is useful to study, but
cannot be implemented because of hardware constraints, is the system of
Figure 2-3. This system will be referred to as the ydot system. In
this system it is assumed that the aircraft velocity y(t) is measured
directly on the aircraft, and is then transmitted to the ground-based
controller. Thus the differentiation of a noisy signal in the PID con-
troller is no longer required, and this leads to a reduced noise response.

For the ydot system of Figure 2-3, it is seen that the following

transfer functions apply.

(K +K,/s)G,(s)
Y(s) Y(s% I M Ui )
Veom's - Y.n(s 1+ (KP+KI/s+KDs7G](§7' (2-7)

G,(s)
Y(s) . 2
Wgzg 1+ (KP+KI/S+KDS)G](S) (2-8)

A comparison of (2-7) for this system to (2-1) for the a-8 system indi-
cates that the bandwidth of the system from the radar noise input to

position output has been reduced. Furthermore, comparing (2-8) to (2-2)
for the a-8 system shows that the wind response is the same for the two
systems. Thus the ydot system appears to échieve the design objectives,

and as will be shown later, does in fact achieve the design objectives.

2-7
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ITI. OBSERVER CONTROL SYSTEM

A possible improvement in the MATCALS closed-loop system is to re-
place the a-g filter in Figure 2-1 with a different filter. The purpose
of the a-g filter is to produce a filtered aircraft position and velocity
signal, y(k) and ; respectively, based on the radar data. An observer,
or state estimator, is a different type of filter that can be used to
produce estimates of the states of the aircraft. Observer theory is
covered in detail in [1], and will not be presented here. The observer-
based MATCALS lateral control system is shown in Figure 3-1. This system
will be referred to as the observer system.

Note in Figure 3-1 that the observer has as inputs the radar data
yR(k) and the controller output ¢(k). The observer outputs are the es-
tirated aircraft position y(k) [il(k) in the observer equations below]
and estimated aircraft velocity [iz(k)]. Thus there is an additional
loop in the observer system that does not appear in the «-g system, which
should lead to increased flexibility. The observer designed for the F4J

lateral control system will now be presented.

Observer Design

The observer designed for the F4J lateral control system is based
on a third-order approximation to the ninth-order model for the aircraft

system in Figure 3-1 [1]. This discrete model is given by

3-1
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x, (k+1) {1.0 0.1 0.00477116 {x1(k) [0.000114237
+

xp(k#1)| = 1 0.0 1.0 0.0932144 gxz(k) 10.00338736 | ¢(k)
x3(k+1) l_o.o 0.0 0.867429 || x4(k) l0.0661790 | (3-1)
y(k) = [1.0 0.0 0.0]] %, (k)
xy(K) (3-2)
x3(k)

In these equations, x](k) = y(k) [aircraft position], xz(k) = y(k) [air-
craft velocity], and x3(k) = y(k) [aircraft acceleration]. These equa-

tions are of the general form

x(k+1) = Ax(k) + Bo(k)
(3-3)
y(k) = Cx(k)
The equations of the observer are given by
x(k+1) = (A-LC)x(k) + Bg(k) + Ly(k) (3-4)

where the matrices A, B, and C are given in (3-3), (3-1), and (3-2). The
matrix L is determined by the design procedure. To determine L, the
characteristic equation of the observer, denoted by a(z), must be chosen.

Then, from (3-4),
a(z) = |2 - (A-LC)] = O (3-5)

The only unknown in (3-5) is L, and Ackermann's Formula [1] may be used
to solve (3-5) for L.

For the observer designed in [1], a(2z) was chosen as

a(z) = (2-0.8)3 (3-6)
which resulted in
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;0.467428 k

| i
L= {0.57863 | (3-7)

|
L0.0353145J
\ _ 8T _ =T/t . .
Since z = ¢ = ¢ , where t is the root time constant, then roots at

2 = 0.8 in (3-6) result in a time constant for the observer of

E-O.]/T = 0.8

or

v = N.448 seconds
since T is 0.1 seconds.
In order to determine the effects of the choice of a(z) on the lat-

eral control system of Figure 3-1, observers were also designed for

a(z) = (2-0.85)° (3-8)

and

a(z) = (2-0.75)3 (3-9)

The observer time constant for (3-8) is then 0.615 seconds, and for (3-9),
0.348 seconds. The results of this design are tabulated in Table 3-1.
A comparison of the responses of these three observer systems to the

three systems described in Chapter II will be given in the next chapter.

3-4
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a(z)

L

TABLE 3-1

Observer Matrices

gz-.85)3 (z-.8[3

0.317429 0.467428

0.254144 0.57863

0.00060367 0.0353145
3-5
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0.617429
1.04757
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IV. COMPARISON OF SYSTEMS

In this chapter a comparison is made of the radar noise responses
and the wind responses of the F4J lateral control system for the six dif-
ferent control configurations described in Chapters II and III. The con-

figurations are:

—
.

a-B system,
2. half-gain system.
3. ydot system.
4, (z-0.85)3 observer system (characteristic equation).
5 (z—0.8)3 observer system.
6. (z-0.75)3 observer system.
Recall that the (z-0.85)3 observer is the slowest one (i.e., narrowest
bandwidth) and the (z-0.75)3 observer is the fastest one (broadest band-
width).

Initial Condition Response

The first comparison of the systems is between the initial condition
responses. All responses discussed in this report were obtained from the
simulation given in [1].

For the initial condition responses, the radar noise signal and the
wind input were set to zero. The initial aircraft displacement y(0) was
set to twenty feet at a range of 13,223 feet, which required a flight
time to touchdown of sixty seconds. The results are given in Figures

4-1 and 4-2.
4-1
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In Figure 4-1 only the (z-.85)3 observer system response is plotted:
the responses of the other two observer systems lie between the (z-.85)3
observer system response and the a-8 system response. The ydot system
response is much slower than the a-8 system response, since the ydot sys-
tem bandwidth is reduced as shown by (2-7). The half-gain system response
is also slower than the a«-B system response, because of the reduced sys-
tem bandwidth.

Conclusions: the observer systems do not degrade the system time
response to the extent of those of the ydot and half-gain systems. How-
ever, the time response of the half-gain system may be adequate; this is

not known.

Stability Margins

An important measurement of the relative stability of a closed-loop
system is the stability margins, i.e., the gain margin and the phase mar-
gin.

The gain margins and the phase margins of the six systems are given
in Table 4-1. Recall from Figure 3-1 that the observer system contains
two loops; thus the stability margins must be calculated for the system
opened in each loop. A property of observer systems is that stability
margins do not change in the primary loop, which in Figure 3-1 is the
system opened at ¢(k). However, stability margins may degrade when opened
at the input to the plant, which in Figure 3-1 is the signal ¢(t).

Note in Table 4-1 that stability margins for the observer systems
opened at ¢(k) are different from those of the a-g system. This differ-
ence originates in the use of a third-order model of the aircraft system
to design the observers.

4-4




TABLE 4-1

Stability Margins-Opened at ¢(k)

system
a-8

half-gain
ydot

(2-0.85)3

(2-0.8)3

(2-0.75)3

(z-0.85)3
(z-0.8)3
(z-0.75)3

phase margin gain margin

49°
42°
49°
55°
55°
55°

15 dB
21 dB
15 dB
11.2 dB
11.7 dB
12.0 dB

Opened at ¢(t)

43°
45°
48°

10.5 dB
12 dB
13.4 dB

4-5
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Conclusicons: it appears that the stability margins of all systems
are adequate, since the half-gain system has the smallest phase margin.
Note that the stability margins improve as the observe speed-of-response

increases.

Closed-1oop Noise Frequency Response

Shown in Figure 4-3 are the closed-loop frequency responses Y/an
for the six systems. The signal Y is the aircraft position, and an is
the radar noise signal. Note that the bandwidth of the a-8 system is
the broadest, and the ydot system has the narrowest bandwidth.

Conclusions: The bandwidths of the observer systems are somewhat
smaller than that of the a-g system, with the (z-.85)3 observer (the
slowest one) having the narrowest bandwidth. Thus this observer system
should have the least response to radar noise, when compared to the
other two observer systems and the a-8 system. The bandwidth of the ydot
system is approximately one-third that of the a-g system. The bandwidth

of the half-gain system is approximately one-half that of the a-g system.

Closed-loop Wind Frequency Response

Given in Figure 4-4 is the closed-loop frequency response Y/W, where
Y is the aircraft position and W is the wind input. The frequency re-
sponse for the ydot system is approximately the same as that of the a-8
system and could not be plotted as a separate curve. This result is ex-
pected, as explained in Chapter 2.

Conclusions: The a-8 system frequency response is acceptable, and
that of the half-gain system is not. The observer systems frequency

3

response falls between these two, with the (z-.75)" observer system

4-6
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(the fastest) closest to the acceptable a-8 system response. Tnis result
is expected, since the fastest observer system has the broadest open-loop

bandwidth, and this is the requiremnent for the least response to wind.

Closed-loop Bank Command Freguency Response

The frequency responses Y/Yrn given in Figure 4-3 would be an accu-
rate indication of system radar noise response if the system were linear.
However, the effects of the nonlinearities in the aircraft do not appear
on the frequency-response plots. Perhaps a better indication of the ef-
fects of radar noise on the system response is given in the frequency
response ¢/an, where ¢ is the bank command and an is the radar noise
signal. The high frequency signals in ¢ are filtered out before reaching
Y, the ajrcraft position. However, these signals can cause both the
rudder and the ailerons servos to reach the mechanical Timits of travel.
This 1imiting is a nonlinear effect.

Shown in Figure 4-5 are the frequency responses for five of the six
systems. The ydot system is not included here. Note that the frequency
responses of the observer systems are considerably less than that of the
a-g system, but much greater than that of the half-gain system.

Conclusions: If the mechanical limiting of the travel of the rudder
and the ailerons is a problem, then the observer systems should perform

better than the a-g system with respect to radar noise response.

Monte Carlo Simulation Results

The Monte Carlo simulation discussed in [1] was used to determine
actual time responses to radar noise and to wind. The wind model used
was simply white noise; thus the use of a more realistic wind model may

4-9
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change the results somewhat. The radar rcise model used was that given
in [3]. Twenty simulations were run for each Monte Carlo test, and the
results given are the statistical averages of these twenty runs.

Given in Table 4-2 is the root-mean-square values of aircraft posi-
tion in feet, with radar noise and no wind. The aircraft flight began
at a range of 13,223 feet (60 seconds flight time to touchdown) with the
aircraft on the extended centerline of the runway; i.e., y(0) = 0. Thus
all motion of the aircraft is due to the radar noise, and hence is unde-
sirable. The a-8 system exhibits the largest motion, the ydot system
the smallest. The observer systems' motions are greater than that of the
half-gain system, but considerably less than that of the a-8 system.

Table 4-3 gives the root-mean-square values of the bank command for
the same simulations. Note that the data follows the same trends as that
in Table 4-2.

Table 4-4 gives additional data from the same Monte Carlo simulation.
This table gives the percentage of time that the rudder and the ailerons
are limited. Note that limiting does not occur for the ydot system, and
very little for the (z-0.85)3 observer system. The limiting is practi-
cally the same for the half-gain system and the (z-0.8)3 observer system.
Extensive 1imiting occurs in the a-g system.

Table 4-5 gives results for the same initial conditions on the air-
craft, except for this simulation the radar noise signal is set to zero
and the wind input is white noise as given in [1]. Note that the a-8
system exhibits the smallest motion to wind, while the half-gain system
exhibits the largest. The observer systems' motion falls between these

values.
4-11




TABLE 4-2

Radar Noise Response-Position Y

rms aircraft % above

system position, feet half-gain system

a-8 2.52 77
half-gain 1.42 0

ydot 1.09 -
(2-0.85)3 1.61 13
(z-0.8)3 1.68 18
(2-0.75)3 1.97 39
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TABLE 4-3

Radar Noise Response-Bank Command ¢

system
a-8
half-gain
ydot
(2-0.85)3
(z-0.8)3

(2-0.75)3

rms bank
command-degrees

3.00
1.47
0.17
1.60
2.23
2.70

% above
half-gain system

104
0
9%

52%
84%



system
a-B
half-gain
ydot
(2-0.85)°
(z-0.8)3

(z-0.75)3

TABLE 4-4

Per Cent Time Limited

aileron
limiting, %

rudder
limiting, %

23

rn

o N O O
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system
a=-8
half-gain
ydot
(2-0.85)
(z-0.8)3
(2-0.75)3

TABLE

4-5

Wind Response-Position Y

ms aircraft % above
position-feet a-8 Ssystem
1.90 0
3.35 82
2.02 6
2.36 24
2.16 14
2.05 8
4.15




Conclusions: The (z-0.75)3 ebserver system exhibits excessive mot Jn
to radar noise, and the (z-0.85)3 observer system exhibits excessive mo-
tion to wind. The radar-noise motion of the (z-0.8)3 observer system ap-
proaches that of the half-gain system; the wind motion of this observer
system approaches that of the a-8 system. In addition, the initial-con-

dition response of the (z-0.8)3 observer system approaches that of the

a=-8 system,

4-16
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V. MODEL 2 SYSTEM

In Chapter 4 an extensive comparison was made between six different
systems. A different system was used to make the actual closed-loop
landings, and this system is called the model 2 system in [(3]. This sys-
tem differs significantly from the «-8 system and the half-gain system
given in Chapter 2, and will now be described.

The block diagram of the a-g filter-controller of the a-g system is

shown in Figure 5-1. The gains G GZ’ G3 and G4 have the standard termi-

1
nology given in Table 5-1. The differences in the a-g8 system parameters

and the model 2 system parameters are given in Table 5-2. Note that setting
the parameter @ to unity gives that « filter in Figure 5-1 a gain of unity;
i.e., that a filter is removed. Note that the model 2 gains in the deriva-
tive path and in the acceleration path have been reduced from those of the
a-B system. Thus we expect the model 2 system to have a better radar noise
response, but a degraded wind response, when compared to the a-g system.

However, the low-frequency gain of the model 2 system is unchanged from that
of the «-g system.

In the following developments, the model 2 system will be compared to an
observer system. However, in this chapter, the obseiver system will have the
same controller parameters as the model 2 system; i.e., the observer system
is the same as the model 2 system, except that the a-g filter in the model
2 system is replaced with an observer. Three observers will once again be

3

considered, with characteristic equations of either (2-0.85)7, or (z-0.8)3,

5«1
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parameter

KeL

TIL
TRL
TAL

S|
82
a3

TABLE 5-1

Gains of Figure 5-1

TR
i 52
6, = Ky "KL
6y = Ky *TRL
6y = Ky *TAL
TABLE 5-2

Controller Parameters
(T = 0.1 seconds)

a-8 system a-8 system
of Chapter 2 model 2
0.1 0.1
30.0 30.0
7.5 6.0
7.5 2.5
0.3174 1.0
0.234 0.234
0.234 0.234
0.121 0.1z2n
0.5 0.51
0.1746 0.1746
5-3
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Initial Condition Response

First the initial condition responses will be compared. For the
comparison, both the radar noise input and the wind input have been set
to zero.

The initial condition responses are given in Figure 5-2. The initial
aircraft displacement y(0) was set to twenty feet at a range of 13,223
feet, which required a flight time to touchdown of sixty seconds. The
response of the (z-0.75)3 observer is not plotted, since it is very close
to that of the model 2 system.

3

Conclusions: The (z-0.75)” and the (z-0.8)3 observer systems degrade

the initial-condition response only slightly. Noticeable degradation
)3

occurs in the (z-0.85)3 observer syste., Recall that the (z-0.35)” obser-

ver is the slowest one.

Stability Margins

The gain margins and the phase margins of the four systems are given
in Table 5-3. The description of the system opened at different points
is given in Chapter 4,

Conclusions: The phase margins of the observer systems opened at ¢(t)
are somewhat small, but those of the (z-0.8)3 and the (z-0.75)3 observer

are close to that of the model 2 system opened at ¢(k).

Closed-loop Noise Frequency Response

Shown in Figure 5-3 are the closed-loop frequency responses Y/an,

5-4
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systen
model 2

(z-0.85)
(z-0.8)
(2-0.75)3

(2-0.85)3
(2-0.8)°
(z—0.75)3

TABLE 5-3
Stability Margins
Opened at &(k)

phase margin

370
41°
41°

41°

Opened at ¢(t)

32°
359
37°
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gain margin
20 dB
17 dB
17 dB
18 dB

12 dB
15 dB
18 dB
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where Y is the aircraft position and an is the radar noise signal (see

Figure 2-2). The frequency response of the (z-0.75)3 observer system

is not plotted, since it is quite close to that of the model 2 system.
Conclusions: The observer systems' noise responses degrade from that

of the model 2 system, with the slowest observer having the narrowest

bandwidth.

Closed-loop 4ind Frequency Response

Given in Figure 5-4 is the closed-loop frequency response Y/W, where
Y is the aircraft position and W is the wind input.

Conclusions: Since low wind response depends on a wide open-loop
bandwidth, we expect the (2-0.85)3 observer (slowest) to have the greatest
wind response. This is seen to be true. The (z-0.75)3 wind response is

very close to that of the model 2 system, and is not plotted.

Closed-loop Bank Command Frequency Response

Given in Figure 5-5 are the frequency responses ¢/an » where ¢ is
the bank command and an is the radar noise signal. The importance of
this frequency response is discussed in Chapter 4.

Conclusions: The observer systems show significant improvement in
the system gain from radar noise to bank command. Thus the ailerons and

rudder should exhibit less motion in the observer systems.

Monte Carlo Simulation Results

The Monte Carlo simulation is discussed in [1] and in Chapter 4.

Given in Table 5-4 are the root-mean-square values of several signals obtained

5-8
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from Monte Carlo simulations with radar-noise input. The column laheled

y is the rms value of position, ¢ is the rms value of bank command, Sa is
the rms aileron angle, éa is the rms aileron velocity, 5, is the rms
rudder angle, and 5r the rms rudder velocity. Also given are the per cent
of time that the aileron servo and the rudder servo are limited. Mote
that the observer systems show significantly less response to radar noise

than does the model 2 system.

In terms of radar-noise response, replacing the a-g8 filter with an
observer significantly improves response. For example, the (z-0.8)3 ob-
server has less than one-half the aileron displacement and velocity as does
the model 2 system. In addition, the aileron servo limiting for this
observer system is almost zero, compared to 13.3% of the time for the model
2 system. Figure 5-6 shows a typical aileron response to radar noise for
the model 2 system and for the (z-0‘8)3 observer system. The flight time
runs from 30 to 46 seconds, or for a range from approximately 6600 feet to
3000 feet. Note that the aileron motion for the observer systeh is signifi-

cantly less than that for the model 2 system.

Table 5-5 gives results from Monte Carlo simulations with the radar
noise removed and the wind input as given in [1]. Note that the model 2
system exhibits the least response to wind, but that the observer systems'
responses are not significantly greater. Also given is a comparison to
the wind response of the a-8 system of Chapter 4.

Conclusions: The observer systems exhibit a significantly improved
radar-noise response when compared to the model 2 systems, but the wind
response is somewhat degraded. Thus, if an observer is employed in the
system, probably the controller gains can be increased to reduce wind response

while maintaining a reasonable radar-noise response.
5-12
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TABLE 5-3

4ind Response-Position ¥

rms aircraft « above S apove
system position-feet medel 2 system 3-3 system
model 2 2.28 0% 18%
(2-0.25)3 2.6 183 392
(2-0.8)° 2.46 10% 297
(2-0.75)° 2.38 6% 25%
5-14
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VI. CONCLUSIONS

The F4J aircraft lateral control system in a MATCALS configuration is
investigated in this report. Several different controllers are utilized
in these studies to determine which yield the best radar-noise response
and which yield the best wind response.

The proposed MATCALS systems contain an a-g filter in the controller.
Alternative systems are constructed by replacing the a-g filter with an
observer. P

In general the observer control systems exhibit significantly less
radar-noise response than do the a-g systems, but exhibit somewhat more
wind response. These studies indicate that the observer controllers im-
prove the MATCALS system's operation when compared to the «-g controllers,

and that the observer systems should be considered further.

6-1




(1]

(2]

[3]

REFERENCES

E. R. Graf, C. L. Phillips, and S. A. Starks, "Marine Air Traffic
Control and Landing System (MATCALS) Investigation", Contract
1-A-2550 (subcontracted from N-00039-80-C-0032), Auburn University,
Auburn University, AL, April, 1981.

Charles L. Phillips, Edward R. Graf, and H. Troy Nagle, Jr., "Marine
Air Traffic Control and Landing System Error and Stability Analysis",
Vol. 1 and 2, Contract N00228-75-C-7080, Auburn University, Auburn
University, AL, 1975.

"MATCALS-AN/TPN-22 Mode 1 Final Report" ITT Gilfillan Technical Re-
port, prepared for Naval Electronics Systems Command, Contract
N0003-75-C-0021, August, 1979.

Y

-




—— c— [ 2]

PART FJUR

THE DESIGN OF A TRI-STATE ADAPTIVE TRACKING

FILTER FOR THE MATCALS SYSTEM

Prepared for

Georgia Institute of Technology
ATLANTA, GEORGIA

Under

Contract 1-A-2550

by

Electrical Engineering Department
Auburn University
Auburn, Alabama

Prepared by: Creeley M. Lee, Jr,

Reviewed by: Scott A. Starks




THE DESIGN OF A TRI-STATE ADAPTIVE TRACKING
FILTER FOR THE MATCALS SYSTEM

ABSTRACT

A tri-state adaptive tracking filter is designed for use in the
F4J aircraft lateral control system in an automatic landing configuration.
The system presently uses an alpha-beta tracking filter to estimate the
aircraft's lateral position and velocity. The tri-state adaptive filter
is designed to replace the alpha-beta filter. Results from the F4J lat-
eral control system simulation indicates that the tri-state adaptive fil-

ter improves the system's response.
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1. INTRODUCTION

This study investigates the possible use of a tri-state adaptive
tracking filter in an automatic landing system for aircraft. The auto-
matic landing system under consideration is the Marine Air Traffic Con-
trol and Landing System (MATCALS). Presently the MATCALS control system
uses an alpha-beta filter to estimate the aircraft's position and velo-
city. The performance of this system is greatly degraded by the amount
of noise present in the system. The tri-state adaptive tracking filter
is presented as a possible replacement for the alpha-beta filter. The
performance of the tri-state adaptive filter was evaluated using the
simulation of the F4J aircraft lateral control systam.

A general discussion of the alpha filter, the alpha-beta filter,
and the alpha-beta-gamma filter is given in Chapter II. This discussion
includes derivations, stability analysis, and noise response evaluation
for each filter. The tri-state adaptive filter, which is composed of
the three filters discussed in Chapter II, is presented in Chapter III.
The selection of the appropriate filter output is governed by the vari-
ance of the filters' smoothed position estimates.

A general description of the MATCALS F4J Lateral Control System
Simulation i< given in Chapter IV. Chapter V presents the results of
the F4J lateral control system simulation using the tri-state adaptive

filter in place of the alpha-beta filter.



I11. THE COMPONENT FILTERS

Introduction

When using radar track-while-scan systems to track a moving air-
craft, radar returns in the form of raw digitized position measurements
must be processed to provide

1) a smoothed estimate of present position;

2) a smoothed estimate of present velocity;

3) a one step ahead prediction of position for track

correlation or bin selection.

In the design of these tracking systems, two conflicting require-
ments must be met. The first requirement is that the system must have
good noise smoothing properties. A system of this type is typically
characterized by a sluggish system response, long time constant and nar-
row bandwidth. The second requirement is that the system must have fast

maneuver following capabilities. This type of system is usually charac-

[ S v

terized by a fast system response, short time constant, and wide band-
width. The first requirement is essential because of the inherent noise
present in the raw unprocessed radar position measurements. On the
other hand, in tracking airborne targets, the dynamics of the tracking
system must be capable of tracking an object that is not stationary in
space. As a result, the second requirement is necessary. Unfortunately,
as one makes the tracking system more insensitive to noise, the maneuver-
following capabilities suffer. Thus, some compromise is always required.

2
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However, the smoothing equations should be structured so as to give the
best compromise. That is, noise smoothing should be maximum for a given
maneuver following capability and vice-versa.

The smoothing of the position and velocity estimates is usually ac-
complished with a digital filter. These filters can range in complexity
from a simple two point extrapolator to the comparatively complex Kalman
filter [1]. This section examines the alpha filter [2], alpha-beta
filter [3], and the alpha-beta-gamma filter [4]. Although the Kalman
filter is more sophisticated and more accurate than the filters being ex-
amined in this section, it is, computationally, the most costly to imple-
ment. The principle advantage of the alpha, alpha-beta, and alpha-beta-
gamma filters versus the Kalman filter is that the computations require
no matrix inversions as does the Kalman filter, which results in faster
filter outputs and less data storage.

Throughout this discussion, only a single dimensional filter will
be considered. The variable x may denote the airc}aft's position in
azimuth, elevation, or range. By assuming smoothing in any given coor-:
dinate can be handled independently, extension to multiple coordinate

systems is straightforward.

The Alpha Tracking Filter

Derivation of the Alpha Filter

The first tracking filter to be examined is the alpha tracker.
The alpha tracker is founded upon the fundamental theorem of exponential
smoothing. The fundamental theorem states that, given a time series
{X(t)} with observations at equally spaced intervals, the first N+l de-

grees of exponential smoothing can be combined, using the binomial
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coefficients, to give an estimate of the values of the coefficients of an
Nth degree polynomial model of the observations to date, evaluated at the
time of the most recent observation [2]. The alpha tracker takes the

form of the simplest first degree of exponential smoothing and can be ex-

/

pressed as

xs(k) = a xm(k) + (1-a) xs(k-1) . (2-1)
where,

xs(k) = smoothed estimate at time kT

xm(k) = jinput measurement of position at time kT

a = position smoothing constant. 0 < a <1

Suppose that the observations of position to date give an estimate
of xs(k-l) and a new observation xm(k) is recgived at time kT. If the
new value is larger than the old estimate, the new estimate xs(k) will be
larger, and conversely.

The alpha tracker is derived from the zero order "window" tracker
[5]. Assume that there exists a series of regularly spaced samples of

position which must be smoothed.

xm(k), xm(k-l), xm(k-Z), cees xm(l), xm(o) (2-2)
such that

xn(k) = x(k) + n(k)
where

xm(k) = input measurement of position at time kT

x(k) = actual value (constant) of position at time kT

P

prangnll R




5
n{k) = measurement noise

At this point in the discussion, the noise is assumed to be Gaussian,

zero mean, with variance = onz. The noise is also assumed to be uncor-

related from sample to sample and therefore independent from sample to

sample,

If x(k) equals some constant X, then the "window tracker" with a

smoothing interval of L samples might be utilized to "average out" the

effects of the randem noise variations on xm(k) such that the estimate

is approximately equal to the actual value X.

via equation (2-3).

: (k)
r x (k
k=1 ™

~|—

x (L) =

This may be accomplished

(2-3)

Now, if the approach of minimizing mean-square ervor between xs(L)

and xm(k) is taken, the best least squares fit of a horizontal line to

the data is obtained.

L 2
min {: (xs(L) - xm(i)) }=0

i=1
x (L)
L
) vy 2
{z (x_(L)-x(i))%) =
3 X AL) “oly Vs m ;
L L
2 I xS(L) -2 t x(i)=0
i=] i=1
: (L) : (
£ x (L) = £ x (i)
j=1 S j=1 M

LU oc BN pan
—

2(x (L) - x (i)) = 0

(2-4)

(2-5)

(2-6)

(2-7)
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L xs(L) = Xq (1) (2-8)

i=]

L
E x(1) (2-9)

|-

(L) =
Xg ]

i
Therefore, the "window" tracker provides a smoothed position estimate
based upon the minimization of the mean-square error between xs(L) and
xm(k).

A one step ahead prediction of position may be obtained from the

"window" tracker by merely shifting the L-length window such that it

spans the measured data from xm(2) to xm(L+1). Equation (2-3) now takes

the form of

wn =1 5 ) (2-10)
+1) = & i -10

X5 0 152 x- (1

1 L+1 ) 1
Xp(L+1) = (t iil Xm(1)) - f'xm(]) (2-11)
L . 1 1

xp(L+1) = (E- ifl xm(1)) - [-xm(]) + ['xm(L+]) (2-12)
xp(L41) = x (L) + L (x(L41) = x, (1)) (2-13)

It is safe to assume that the smoothed estimate xS(L) is a more accurate
value of true position than the noise corrupted measurement xm(l).

Therefore, (2-13) becomes

x(L41) = x (L) + L (x(L41) = x (L)) (2-14)




rearranging terms
xp(L+1) =1 xm(L+1) + (1 L) xS(L) (2-15)

then a familiar form of the alpha tracking filter is

—{—

By defining a =
obtained [6].

Xp(k+]) = q Xm(k+]) + (1-a) Xs(k) (2-16)

where xp(k+1) is the one step ahead prediction of position. By examining
(2-15), it is evident that as the length L of the smoothing window is
extended, a decreases, resulting in increased smoothing since the new
measurement data is not weighted as heavily as the previous estimates of
position. If it were known that the initial estimates of positions were
correct then there would be no point in using the measurement data as a
basis for prediction and the smoothing constant « would approach the
value of zero. If, on the other hand L is decreased, a increases in
value (approaching unity) such that the new measurement of position is
weighted more heavily, rapidly discounting the effects of the previous
estimates.

When (2-16) is substituted into itself for successively earlier

samples, a series emerges of the form

k+1
x (k¥1) = a £ (1-a)" x_(k+1-n) (2-17)
P n=0 m

From (2-17) it is evident that the alpha tracker assigns geometrically
decreasing weights to the least recent data, hence the term exponential

smoothing.




Alpha-Filter Noise Response

The alpha tracker can be depicted as in Figure 2.1, where the im-

pulse response of the digital filter is defined by

k

hk) & a (1-a) (2-18)

The output of the filter is a convolution of the input and the filter's

impulse response

xs(k) = h(k) = xm(k) . (2-19)

Some idea of the noise smoothing performance of the alpha tracker may be
obtained by examining the mean and variance of xs(k). The convolution of

(2-19) may be written as

x (k) =a £ (1-0)" [X + n(k-n)]. (2-20) i
S _
n=0
where l

a(I-u)n = impulse response of alpha tracker ‘
X = actual position of target
n(k) = additive zero mean Gaussian noise with

variance = ¢ 2

n
Taking the expected value of (2-20) yields the mean of the output

of the alpha tracker.

E{x (k)} = Efa zo (1-a)" [X + n(k-n)]} (2-21)
n=

E(x (k)} =a = (1-a)" E{X + n(k-n)} (2-22)
s n=0




X (K) ] h{k)

]

ali-a e (1)

Figure 2.1. Block Diagram Representation of Alpha-Filter
Transfer Function.
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(1-a)" E{(X} + E{n(k-n)} (2-23)

™8

E{Xs(k)} = a

n=0

Since X is a constant, E{X} = X. n(k) is zero mean, therefore E{n{k-n)}

= 0 and (2-23) becomes

Etx(K)} = o M xo. (2-24)

n

(1-a

o4 8

0

Using the identity, for |a| < 1,

n ]
U T (2-25)
0 ]‘a

Wt~ 8

n

= - a = -
Exg(K)) = gy X = X (2-26)

Thus the alpha tracker is capable of tracking a constant level of posi-
tion, corrupted by zero mean Gaussian noise, with no bias or offset.

The variance of the output estimate x_(k) is given by

s
var{x (k)3 = E{[a ngo (1-a)" [X+n(k-n)] - E{xs(k)}]z} . (2-27)

From (2-26) E{x (K)} = X

so that
varix (k)} = E{[a ngo (1-)" (x+n(k-n) - X)1%) (2-28)
varte (0 = E(ls £ 01-a)" nllen) 1) (2-29)

LELr (o) n(kem) ][ 2 (1=a) n(kei)]) (2-30)
n=0 Jj=0

var{xs(k)}
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var{xs(k)} = 02 ; ; (1-a)" (]-a)j E{n(k-n) n(k-j)} (2-31)

n=0 j=0
The noise n(k) is uncorrelated from sample to sample such that

0ifi# 3]
o Zif i =

E{n(k-n) n(k-j)}

n

E{n(k-n) n(k-j)}

Therefore (2-31) is reduced to only one summation.

varix_(k)) = o & (1-)?" 0 % . (2-32)
s - n
n=0
) . . Z k_ .
Using the identity £ a" = ia again,
_ -a
n=0
2
var{x (k)} = ——41——75 (2-33)
1-(1-a)
var{x (k)} = % ¢ 2 (2-34)
S 2-a n :

It is evident that as a decreases the noise response of the system, and

thus the variance in the output estimate, decreases.

Analysis of the Alpha Filter in
the Z-domain

By taking the z-transform [7] of equation (2-1) the alpha-tracker

may be examined in the z-domain,

-1

n

x (2) = (1-a)z7" x (2) + a x () . (2-35)
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Rearranging terms yields the z-transform of the alpha-tracker [6].

XS(Z) - Q

H = F — . 2-36
A O (2:36)

The alpha-tracker is seen to have a pole located at
z2=1-a . (2-37)

Since a tracking system with stable dynamics is required, « must be se-
lected such that the system pole lies within the unit circle. The locus
of possible pole locations within the unit circle is shown in Figure 2.2.
By examining Figure 2.2 it is evident that « must fall within the range
of 0 < a <1 for stable operation. Selecting « too ciose to 1 causes the
weighting sequence of the alpha-tracker to rapidly approach zero. Such a
selection yields a system with fast response to transients. Selecting a
close to 0 results in a sluggish system response (more smoothing) and a

decreased response to noise. The zero of the alpha-tracker is located at
z=0 (2-38)

and thus weights the entire frequency response of the system equally.
The alpha-tracker, though simple to implement, is limited in its
ability to track a moving target. The limited tracking ability of the
alpha-tracker becomes eQident when xs(k) is examined as a function of
xm(k) for different target trajectories.
The case of constant position, zero velocity will first be exam-

ined. This case might be analogous to the azimuth or elevation tracking

of an aircraft moving radially with respect to the radar.

X, (k) = X (2-39)




éjImZ

Figure 2.2.

I X >

Re Z

locus of possible poles —)

Locus of Possible Pole Locations for Stable
Operation of Alpha Tracking Filter.

R e o = T PP

eSS
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Applying the z transform,
= Xz_ -
x (2) = 52 (2-40)
_ aZ _
H(z) = m—)- . (2-41)
Therefore
- Xz, az aXz )
x(2) = 35 7= T T e-0=a)) - (2-42)
By utilizing the partial function expansion method,
Xz (1-a)Xz )
xs(2) = 23 z-(1-a) (2-43)
Finally,
xg(K) = X = (1-a)(1-a)% (2-44)
x (k) = X - (1-)¥*T x (2-45)
where

X = actual signal

X(I-a)k+] = bias or amount of lag.

As k increases, the bias rapidly approaches zero and the output equals
the constant position input X.

The alpha-tracker does not perform as well when a constant velocity
input is applied to the system. This can be verified by making Xm(k) a

sampled ramp function.

x, (k) = Vk (2-46)
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x (2) = —Y5 (2-47)
(z-1)
Therefore,
2
x (z) = sz (2-48)
s (z-1)(2z-(1-a))

After applying the partial fraction expansion,

x () = vk - W= 1.0y (2-49)

where,

Vk = actual signal

1(1_;3). [1-(1-0)] = bias

Unlike before, as k increases, the bias does not approach zero such that

x (k) = Vk - V(o) (2-50)

Q

From (2-49) the inability of the alpha-tracker to track, with zero bias,
any signal other than a constant amplitude signal with random noise vari-

ations is established.

The Alpha-Beta Tracking Filter

Derivation of the Alpha-Beta Filter

The inability of the alpha-tracker to track without bias a target
whose position is changing with respect to time suggests that a more
generalized model for target trajectory should be investigated. The
new model should account for the target's change in position via a con-

stant velocity term such that the new model for target trajectory is
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x(k) = x(k-1) + vT . (2-51)
where

x{k) = actual position at time kT

x(k-1) = actual position at time (k-1)T

v = velocity (constant)

T = time between samples

To track a target following a trajectory as prescribed in (2-51),
both smoothed estimates of position and velocity are required. From [3]
one method to obtain smoothed estimates of position and velocity is to

define a tracking system such that

xs(k) = gx(O)xm(k) + gx(])xm(k-l) + ... (2-52)
and
xs(k) = gx(O)xm(k) + gx(])xm(k-l) + ... (2-53) l
where l
xm(k) = noise corrupted position measurement at time nT
i
(x,(k) = x(k) + n) "
xs(k) = smoothed estimate of position at time kT
is(k) = smoothed estimate of velocity at time kT
gx{k) = the input position to output position weighting
sequence or unit-impulse response
gx(k) = the input position to output velocity weighting

sequence or unit-impulse response
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Smoothed estimates of position and velocity may also be obtained by

defining a set of recursive equations of the form
xs(k) = vy xs(k-]) t v, xs(k-Z) oty xs(k-N)
+ & xm(k) + 6 xm(k-l) ot 6 xm(k-m) (2-54)
X (k) = ny X (k-1) + ny X_(k-2) + ...+ ny X (k-N)
+ g xm(k) * N xm(k-l) MEREER P xm(k-m) . (2-55)

Equations (2-54) and (2-55) are termed Nth order (since Yy and = n for
k > N+1) and at least N storage Tocations in a computer are required to
compute these estimates. Equations (2-54) and (2-55) may be combinad to
form a set of second order difference equations known as the alpha-beta

tracking filter [8].

xg (k) = xp(k) +alx (k) - xp(k)) (2-56)

x (k) = R (k1) + /T (x,(K) - xo(K)) (2-57)

xp(k+1) = xs(k) + T xs(k) (2-58)

xp(k+1) = xS(k) (2-59)
where

xm(k) = noise corrupted position measurement at time kT

xs(k) = smoothed estimate of position at time kT

ks(k) = smoothed estimate of velocity at time kT

xp(k+]) = one step ahead prediction of position at time

(k+1)T

org -
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ip(k+1) = one step ahead prediction of velocity at time
(k+1)T
a = position smoothing constant
B = velocity smoothing constant
T = time between samples

Successive corrections are made to the smoothed values of position
and velocity proportional to the differences between the measured posi-
tion xm(k) and the previous predicted estimate of position xp(k). As
time progresses from the interval (k-1)T < t < kT to the next interval,
kT < t < (k+1)T, xs(k) is increased by the amount a[xm(k) - xp(k)], and
the velocity is(k) is increased by the amount s[xm(k) - xp(k)]. Examin-
ing (2-56) through (2-59) it is apparent that the value of a and 8 deter-
mine the degree of smoothing between measured and predicted values of
position to yield the smoothed estimate of position. If o and B approach
unity, then the measured values of position are weighted more heavily
than the predicted values of position. Such a system is characterized
by wide bandwidth resulting in very 1ittle smoothing of the incoming po-
sitional data. Conversely, if o and B approach zero then the predicted
values of position are weighted more heavily than the measured values
effectively narrowing the bandwidth of the system and resulting in in-
creased data smoothing. The predictor equations are based upon the as-
sumption that the target aircraft will maintain a constant velocity

trajectory throughout the tracking procedure.
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Analysis of the Alpha-Beta Filter
in the Z-Domain

‘The predictor equation (2-5%) can be modeled as a sampled
data feedback systen in which the error defined by ex(t) = xq(t) -

xp(t), is converted to a train of impulses,

e;(t) =1 e (kT) &(t-kT) . (2-60)

;o
This train is applied to a single and double integrator combination whose
jmpulse response is the sum of a step function of height a and a ramp of
slope 8/T. The block diagram is shown in Figure 2.3.

The transfer function of the single and double integrator combina-

tion may be expressed via its Laplace transform as

Gp(S) =

wiR

8
+ , (2-61)
12
The transformation of the continuous error ex(t) into the impulse train
e;(t) is indicated by the sampling switch.
In the z-domain, the transfer function of the predictor can be ex-

pressed as

6, (2) = [(etek)z K] - a (2-62)

~
it 1 8
o

which sums to the following closed form [9],

2-2

G (Z) - lng)Z-] - Q

2-63)
P (1-z71)? (

By manipulation of (2-63), the predictor transfer function can be found

to be
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z
_p - (atB)Z - «a 2.
H3(Z) X2 22 + (g+a-2)z + (1-a) ' (2-64)

In a similar manner, the transfer functions for smocthed position and

smoothed velocity may be found to be

(z)

_ s _B z(z-1) 2-65
2 3@ T 7 (8+a-2)z + (1-a) (2-63)
Xs(z) z[az + 8 ~ o]

b (2) - 2-66)
112 Xm(z) 22 + (pta-2)z + (1-a) |

Note that the three transfer functions have the same characteristic
equation and the poles of the transfer functions can be found solving

for the roots of,

224 (gta-2)z + (1-a) = 0 . (2-67)

By applying the quadratic formula, the roots of the characteristic equa-

tion are seen to occur at

2-a-B

= 1/2
z=55= ¢

(62 vl s 228 - 48)

(2-68)

| —

Stability of the Alpha-Beta Filter

Since a stable tracking system is desired, the values for « and g
must be selected such that the system poles lie within the unit circle of
the z-plane. One method of determining the values of a and 8 for stabil-
ity is to apply the Jury stability test [10]. The Jury stability test
is a stability criterion for sampled data systems that is similar to
the Routh-Hurwitz criterion [11]. Applving the Jury criterion to (2-€7),

the Jury array obtained is




22
ZO Z‘l 22
(]-_ay (G+B'§Y i . (2-69)

The necessary and sufficient conditions for the second order characteris-
tic equation (2-67) to have no roots on or outside the unit circle are as

follows:

Condition 1: F(1) > 0
Condition 2: (-1)2F(-1) > @
Condition 3: Iaol <a, . (2-70)

2

Condition 1: z° + (a+B8-2)z + (1-a) >0

z=]

(1)% + (a+8-2)(1) + (1-a) > O

g>0

Condition 2: (1) [22 + (a*8-2)z + (1-a)]
z=-1

1+ 2-a0t8 + 1=a > 0

20t < 4

Condition 3: ]aol < a,

where,
ao = J-a
a, = 1
[1-a] <1
therefore
a>0
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An additional stable condition exists when g = 0, since in that case the
zero of the denominators of equations (2-64) through (2-66) at z = 1 is
cancelled by one of the zeroes of the numerators. The resulting require-

ments for stability are

a>0
8 >0
20 + B >4 (2-71)

Alpha-Beta Filter Noise Response

Some insight into the noise smoothing performance of the alpha-beta
filter may be obtained by examining the mean and variance of the smoothed
position estimate xs(k). Utilizing the partial fraction expansion method
to inverse transform equation (2-66), the impulse response for the

smoothed position output of the alpha-beta filter is,

2
l - —
hy(k) = G+ =3 . 1/2][2 A % (8%+a%+as-a8)' /21K
2(B8 +at2a8-48)
2
4 [ . zaT-aBt28 2-3-8 1 (2, 2.0 0 4g)/29K

il -5
2" Y(elralizagag) /e 2 2

(2-72)

Assuming a constant velocity target, the input to the filter is given by:

xm(k) = X + vkT + n(k) (2-73)
where,
X = actual position of target aircraft
v = actual velocity of target aircraft
n(k) = additive zero mean Gaussian noise with variance = ¢

n

N e
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T = sampling interval ,

The smoothed position estimate x_{k) is given by the convolution of the

s
impulse response h](k) and the input xm(k).

x (k) = °§O y (n) %, (ken) (2-72)
n:

From (2-72) the impulse response may be expressed as

i} k k i
h](k) = C][B]] + C2[82] (2-75)
where,
« -az—a8+26
c. = %+
] 2 2 (82+a2+2a8-48)”2
-az—a8+28
= 3 2, 2
¢ T 2 (p%a“+2as-48)'/?
2-a-8 , 1 2, 2
B'I = g + 5 (B +a +2a8—48)]/2
_ 2-a-8 1 2, 2
By = SFT -7 (8% v2up-ts)!/2

Substituting (2-75) and (2-73) for h](k) and xm(k) respectively, the

smoothed position estimate is given by

() -

il o1 8

) [C](B])n + CZ(BZ)n][X + vkT + n(k-n)] . (2-76)

The mean of xs(k) may be found by taking the expected value of (2-76)

E{xs(k/} = Ef

[c](al)" + cz(Bz)"][x + vkT + n(k-n)]} (2-77)
n

o~ 8

0
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Ex (K)) =z [C(B)" + Cy(8,)"] ELLX + VKT + n(k-n)])
S n=0
(2-78)
E(x_(K)} = £ [Cq(By)" + C,(B,)"I[E{X) + E{VKT} + E{n(k-n)}]
S neg V1 2'72
(2-79)
Since X and v are deterministic, and n(k) is zero mean,
E{X} = X
E{vkT}; = vkT
E{n(k-n)} = 0
such that (2-79) becomes
.z n n
E{xs(k)} = nEO [01(81) + CZ(BZ) I[X + vkT] . (2-80)
_ i n n
E{xs(k)} = [X + vkT] nEO [C](B1) + CZ(BZ) ] . (2-81)
. e T k]
Using the identity ¢ a° = 3
n=0 -
G . G '
E{xs(k)} = [X + vkT] ]—_—B]— + T8, (2-82)

After extensive algebraic manipulation, it can be shown that the mean of

the smoothed position estimates is

E{xs(k)} = X + vkT . (2-83)

The result shown in (2-83) implies that, given a constant velocity target

trajectory, the -moothed position estimate xs(k) is unbiased.

-
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In a similar manner, the variance of the smoothed position estimate

may be calculated.

i}

var(xs(k)} E{([[ ; C](B])n + C2(82)n][x + vkT + n(k-n)
n:

0

Eix (K)11%) . (2-84)
From (2-83)

E{Xs(k)} = X + vkT
so that (2-84) becomes

E([ ¢
n=0

1

var{xs(k)} (C](B])n + Cz(Bz)n)n(k-n)]z} (2-85)

|

var{xs(k)} E{[C]

n

I~ 8

(8,)"n(k-n) + C
0 1 n n 2 0

it~ 8

(8,)"n(k-n)]
. 5 n(k-n)

-]

N~ g

(8,)n(k-3) + ¢,

-[C
1 .
0 h]

. (8,)In(k-3)11  (2-86)
J

e

0

Tt G (8" + Cy(B.)MILCs (B, )
S0 5% 1 (8 2(B,) 1C, (By)

var{xs(k)}

-+

C2(Bz)j] E{n(k-n)n(k-j)} . (2-87)

The noise is uncorrelated from sample to sample, therefore

u

E{n(k-n) n(k-j)} = 0 if i#]

o & if i=]

t

E{n(k-n) n(k-j)}

Now (2-87) is reduced to a single sum

oo~ og

varix (k)i = = [C,(8)" + Cy(8,)" o 2 (2-88)

n=0
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* 2 2
vartx (01 = & 18 (82" + 2¢,C,(8))"(8,)" + ¢5(8,)%"] o 2
(2-89)
. n no_ n T ok_ 1

Since (8]) (82) = (B]BZ) and nfo a = 2 (2-89) becomes
o [clz 2¢,C, 022 ) .
var{x (k)} = + +t — 1o} 2-90

s h]_B]Z 1-(8182) 1-822 n .,

With considerable algebraic manipulation, it can be shown [3] that

variance of the smoothed position estimate is

2
var(x (k)} = [ ot il ] o 2. (2-91)

If the variance in the smaothed position is expressed as

2

var{xs(k)} = KX(O)on (2-92)

then KX(O) js known as the variance reduction ratio [9]. If KX(O) is
less than one then the tracking system has reduced the effect of noise

on the output signal. If KX(O) is greater than one, the system has ac-
centuated the noise. The variance reduction ratio is superior for values
of a and g approaching zero.

Performance Measures for the
Alpha-Beta Filter

Benedict and Border [3] introduced two performance measures in
order to assess properly the attributes of noise reduction and transient
performance and derive an optimal relation between o« and B.

For noise smoothing, the performance measures are the aforemen-

tioned variance reduction ratio in position output defined by:

e
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KX(O) = steady-state variance in position output

variance in raw position input (2-93)
and the variance reduction ratio in velocity output defined by:

Ki(O) = steady-state variance in velocity output

variance in raw position input (2-94)

For transient performance the performance measures are

sz = ¢ [(unit-increment ramp)-(position ramp response)]2
N n=0
(2-95)
and
Diz = ¢ [(velocity of unit-increment ramp)
n=0
- (velocity ramp response)]2 . (2-96)

If the impulse responses of both the smoothed position output (previously
derived in this paper) and the smoothed velocity output are obtained,

then the performance measures for the alpha-beta tracker is found to

be [3],
2
2a 2-3a
0, (0) = Zapgtyazsdel (2-97)
K (0) = — 26 (2-98)
X T a| 4-2(1-6'

2
2 (2-a)(l-a
Dx " apl4-8-2a (2-99)

2
2 _ 1 o"(2-a) +28(1-c)
Oy 12 o8l4-8-2d] ' (2-100)
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Based upon these performance measures, Benedict and Bordner [3]

utilized the calculus of variations to optimally select the values of a

2 2

and g so as to minimize respectively D, and Dg for a given KX(O) and

Ki(O), and vice versa. The relationship between o and g which results

in the optimal tracker is given by

no

= % -
8 - 2_0. . (2 ]0])

The recursive nature of the alpha-beta filter equations allows them
to be incorporated easily intc a computer algorithm which performs the
filtering process. A flowchart for implementing the alpha-beta filter on

a computer is given in Figure 2.4.

The Alpha-Beta-Gamma Tracking Filter

Derivation of the Alpha-Beta-
Gamma Tracking Filter

The alpha-beta tracking filter previously discussed is best suited
for a target under track which has constant veloc{ty. For the case of
an aircraft experiencing a great deal of maneuvering, changes in velocity
between sample intervals are often significant. As a result, the ability
of the alpha-beta filter to track an accelerating target is severely
hindered. The degradation in performance which occurs when an alpha-beta
filter tracks an accelerating target, suggests that a tracking filter
which includes an acceleration estimate might be appropriate for a ma-
neuvering aircraft. The model for the accelerating target trajectory is

therefore chosen as

aT2
x(k) = x(k-1) + vT + A (2-102)
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INITIALIZE o AND 8

INPUT xm(k)

xp(k) = xs(k-l) + Tis(k)

ip(k) = is(k-l)

]

xs(k) . xp(k) + a[xm(k)-xp(k)]

X (k) = (k) + 8/TOx; (k)-x (k)]

Figure 2.4. Flowchart of the Alpha-Beta Tracking Filter.
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where,
x(k) = actual target position at time kT
x(k-1) = actual target position at time (k-1)T
Y = velocity of target
a = acceleration of target (constant)
T = time between samples

In order to accurately track a target following a trajectory such
as prescribed in (2-102), smoothed estimates of position, velocity and
acceleration must be available. Simpson [4] defines a system of
weighting sequences ih order to obtain the smoothed estimates of posi-

tion, velocity, and acceleration. These are:

o

xs(k) = nfo gx(n) xm(k-n) (2-103)

xs(k) = nio gi(n) xm(k-n) (2-104)

x (k) = nio gg-(n) x, (k-n) (2-105)
where

xm(k) = noise corrupted position measurement at time kT

(xm(k) = x(k) +n).

xs(k) = smoothed estimate of position at time kT

is(k) = smoothe: :timate of velocity at time kT

'is(k) = smoothe. ,timate of acceleration at time kT

gx(n) = the input position to output position weighting

sequence, or unit-impulse response of the system
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gi(n) = the input position to output velocity weighting
sequence, or unit-impulse response of the system
gi-(n) = the input position to output acceleration weighting

sequence, or unit-impulse response of the system

Alternately, a corresponding sampled data system can be character-

ized by a set of recursive equations such as

xs(k) = 0y xs(k-l) + 0, xs(k-Z) ooy xs(k-N)
+ 8, xm(k) * 8 xm(k-l) LTI S xm(k-m) (2-106)
x (k) = ny X (k=1) + ny X (k-2) + ... + ny X (k-N)
* g xm(k) * A xm(k-1) LERP xm(k-m) (2-107)
i's(k) = 1, Sc's(k-l) + 1, >'<'S(k-2) o+ i's(k-N)
+ e xm(k) + g xm(k-]) e xm(k-m) . (2-108)
When such recursive equations terminate (i.e., Op =M T M = 0 for

k > N+1), the equations are termed Nth order.
Equations (2-106) through (2-108) may be combined to form a set of
third order difference equations which define the alpha-beta-gamma track-

ing filter [4]. These are given as

xg(k) = x (k) + alx (k) = x (K)) (2-109)
k(KD = % () + (8/T) (x (k) = x;(K)) (2-110)
00 = 8 ) + () (6 - x (k) (2-111)
xp(k) = x (k1) + T X (k-1) (2-112)




33

xp(k) = xs(k-l) + T xs(k—l) , (2-113)
where

xm(k) = noise corrupted position measurement at time kT

xs(k) = smoothed estimate of position at time kT

is(k) = smoothed estimate of velocity at time kT

i's(k) = smoothed estimate of acceleration at time kT

xp(k) = one-step ahead prediction of position at time kT

ip(k) = one-step ahead prediction of velocity at time kT

a = position smoothing constant

8 = velocity smoothing constant

Y = acceleration smoothing constant

T = time between samples

The alpha-beta-gamma tracking filter is a third order filter which
can track a constant acceleration target with a trajectory as prescribed
in (2-102) with zero steady-state error. The simflarities between the
alpha-beta filter and the alpha-beta-gamma filter are obvious when
equations (2-109) through (2-113) are compared to those for the alpha-
beta filter. While o and g perform the same function as they did in the
alpha-beta filter, the vy term provides the much needed acceleration esti-
mate essential for accurately tracking a maneuvering target. This more
generalized tracking filter not only maintains track throughout maneuvers
or turbulent conditions, but in addition, provides smoothed estimates of
position, velocity, and acceleration with very 1ittle increase in com-

putational effort.
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The Alpha-Beta-Gamma Filter
in the Z-Domain

The properties of the alpha-beta-gamma tracking filter may be more
effectively studied in the Z-domain. Taking the Z-transform of equations
(2-109) through (2-113) and using the right shifting property results in {

_ -1 -1 s
xp(z) =z xs(z) + 7T 2 xs(z) (2-114)
x (z) = 271 % (z; + T L (z) (2-115)
p s ! s
xs(z) = (1-a) xp(z) + q xm(z) (2-116)
x (z) = ip(Z) + (8/T) x(2) - (8/T) xp(Z) (2-117)
.e _o=1 e 2 2
X (2) = 27X (2) ¢ (/T x(2) - /T0) x(2) . (2-118)
In the alpha-beta-gamma tracker, there is one input to the system, '

xm(k), and five output signals xp(k), ip(k), x (k) X

((k), and i's(k). ]

Therefore, there must exist five separate transfer functions relating
xm(z) to xp(z), xp(z), xs(z), xs(z), and x . These transfer functions
may be obtained by dividing each side of equations (2-114) through (2-118)

by xm(z) to yield

x_(z) .1 % (2) R x_(z)

H](Z) =i-(ﬂ=2 ;:17?)""1'2 ;—IS;(?T (2-119)
x_(z) x_(z) X

Hy(z) = ;,%3 =27 ;im 4727 Xmszz (2-120)

X
Hy(2) = XS(Z) Tt e ﬁ-ﬂ (2-121)
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x (z)  x_ (z) (8/T) x_(z2)

m

I N e Il & R ) el

(+/T%) x,,(2)

(2-122)

(v/T%) x_(z)

P

P (@)
"5(2) = 5y TP ()

After incorporating the transfer function relationships

x (z2) x {(z)
H](Z) = ;‘:,_(?7 ’ HZ(Z) = ;';L(E')'

xs(z) i's(z)
H4(Z) = x 77 HS(Z) = —x;(l—)—

Xm(27

xS(Z)

x-(2)

and rearranging terms, the set of five equations becomes

Hy (2) - 27! Hy(z) - T 2" Hy (2
Hy(2) = 27 Hylz) - T 27! He (2

(1-a) H](z) - H3(z) z -q

(8/T) H](z) - H2(z) + H4(z) =

(/T8) Hy(2) + (1-27)) Hg(2) =

) =0

) =20

8/ T

AL

(2-123)

(2-124)

(2-125)

(2-126)

(2-127)

(2-128)

The transfer functions, Hi(z), now have the rational form Ni(z)/D(z).

The general determinant D(z) is given by
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1, 0, -z, 1277, 0
-1 . ‘
0, 1, 0, -7, -TZ
(T-a) 0, -1, o, 0 (2-129)
(B/T)’ "‘], 0, ], 0
(v/T2), 0, 0, 0, (1-z7)
which upon evaluation yields [12]
- -3 -3 2
D(z) = (-2)77 [z7+(a+8-3)2° + (3+y-2a-8)z + (a-1)] . (2-130)

By using the theory of determinants [12] and performing considerable

algebra, the transfer functions for the smoothed output variables are

[]2]9

x _(z2) 3 2
Hao(z) = =S - az” + (8-20)2" + (atg-y)z (2-131)
3 ?) Xm(Z> 23 + (a+8-3)22 + (3+y-20-8)z + (a-1) ‘
x (z) 3 2
H,(z) = S = 1 gz + (X"ZB)Z + (B-y) (2-132)
4 xm:Zj T 23 + (a+8-3)22 + (3+y-2a-8)z + (a-1) l
x (z) 3 2
Ho(z) = —S =Y z2- - 22 +2
5 (2] 32 3 (463022 + (3ty-20-8)z + (a-1)

(2-133)

These transfer functions have the same denominator polynomial and
therefore have the same set of poles. Observing the transfer functicn
solutions for the alpha-beta filter outputs xs(z) (2-56) and is(z) (2-57),
it is interesting to note that the solutions (2-131) through (2-132) do
not reduce tc those of the simpler alpha-beta filter solutions for y = O.
This can also be seen from the original difference equation statements of

both systems. The alpha-beta-gamma filter can be reduced to behave as
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the alpha-beta filter in practice by letting y = 0 and requiring the
boundary condition R'S(O) = 0. The point to be made here is that the
alpha-beta-gamma filter is not merely a simple extension of the alpha-
beta filter.

Stability of the Alpha-Beta-
Gamma Filter

A stable tracking system requires that a bounded filter input pro-
duces a bounded filter output. In the Z plane, this strictly means that
the poles of the characteristic equation lie within the unit circle.
There are many tests for stability but the Jury stability criterion
[10] will be applied here as it was for the alpha-beta filter. First,

the denominator of the transfer function is written as

F(z) = (1=a) + (3 -2a-g+y)z + (a+8-3)22 + (1)23 (2-134)

where

+az1+a222+az3

F(z) = ag + a 3

a

From (2-134) the Jury array obtained is

0
z 1 Z2 3

(2 I € ) B (-5 N ) (2-135)

The requirement that F(z) has all of its roots within the unit

rircle is satisfied by the conditions:

Condition 1: F(1) > 0O
Condition 2: (-1)3 F(-1) » 0
Condition 3: Ja ! <« a,

u

Condition 4: ‘b | > Ib,!




where

Condition 1;

Condition 2:

Condition 3:

where,

28
aO am-k
an ak m=3
3 2
27+ (atB-3)z° + (3+y-2«-2)z 4 (a=1) >0

|z=1

2

(103 + (a+8-3)(1)2 + (3+v-22-3)(1) * (a=1) > O

T+a+B-3+3+g-20-8+a-2>0
a >0

z3 + (a+8-3)22 + (3+y-2a-8)z + (a-1) >0

z=-1
+ (3ty-2a-8)(-1) + (a-1) > 0

Sl+a+B-3-3-y+t2a+8+a-1>0
4og + 28 - vy - 8>0
4 + 28 -y > 8

e L B _x
5 + I~ 8 1
lag] < ay»
3, = a-1
a, = 1
[a=1) <1
0 - X

(2-136)

(2-137)

(2-738)
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Condition 4: Ibol > Ib2|,

where,
ao 2, )
bo = = (a=1) -1 = Gz -2a
ao a]
b2 = = (a-])(a+8-3) - (3'20‘B+Y)(])
_ 2
b, =a” +aB -2at+ty ,
therefore,

|a2-2a| > ia2+a8-2u+Y|
a8 >y (2-139)
since 0 <a <2 ,
B8>0 . (2-140)

The relations just presented are necessary and sufficient for the poles
of the characteristic equation to lie within the unit circle. These
relations are very useful when manipulating «, 8, and y in designing a

filter to satisfy a particular set of specifications.
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Pole Analysis for the Alpha-
Beta-Gamma Tracking Filter

When one of the equations (2-116) through (2-118) are solved to

obtain one of the outputs xout(z)’ the output will be of the rational

form [9]
N
N(2) _n] (z—wi)
_N(2) _ =
Xout{) = plzy = N, . (2-141)
n (Z‘pi) !
i=1

where m, is the multiplicity of the ith pole, W, is the ith zero of the
system and Pj is the ith pole of the system. The partial fraction ex-
pansion and inversion will yield the general form [9]
m
! k
xOUt(nT) - AO(pi’wi) + kzl g]k(ks pi’ wi)(p])

Mo

w1 9Kk by, W) (pp)¥

N
2
k
+ k£] gy2(ks pys wi)(pNz) . (2-142)

A1l the terms, except A0 decay as the power of a given pole or root of
the denominator (p‘.)k where lpil < 1. The g coefficients may contain
powers of k which offset this decay, but the structure of (2-142) pro-

vides an approach to alter the response of the filter by choosing the
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poles and then obtaining the required a, 8, and vy.

of the characteristic equation and defining

DO(Z)

(z-p)(z-p,)(2z-p3)

7t can be shown that [12],

Pzat+p-3= -(P] +p2+ P3)
Q=3+y-2a-8-= p]pz + P2P3 + p'|p3
Rza-1-=

* =PyP2P3

e e oo e

23 + (a+p-3)z% + (3+y-2a-8)z + (a-1)

Thus given the poles

(2-143)

(2-144)

(2-145)

(2-146)

Conversely the poles may be derived by knowing a, 8, y and solving

the cubic equation Do(z) =0, If
Do(z) = 23 + Pz2 +Qz+R ,

then from [13],

N 2
3;3(3Q-P)
b = %7 (2p3 - 9PQ + 27R)
2 3q 112

(2]
[11]
| s |
blcr
+.
S
—_

(2-147)

(2-148)

(2-149)

(2-150)

(2-151

(2-152)

(2-153)
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Ep 3= - [-&Z—&] +iv3 [A—'z'ﬁ] , (2-154)

and the poles are,

Py = E] - P/3 ' (2-155)

=t 3" P/3 . (2-156)

P2.3 7 b2,

Alpha-Beta-Gamma Filter Noise Response

Singer and Behnke [14] have shown that an alpha-beta filter has
a noise response which is less than 20% worse than that of a Kalman fil-
ter for smoothed estimates of position and velocity. The second order
comparison suggests that the alpha-beta-gamma filter will perform in a
similar manner when compared with a third order Kalman filter.

Once again the variance reduction ratios KX(O), Ki(o), and Ki-(O)
are introduced to evaluate the noise throughput of the tracking system.

Simpson [4] defines the noise performance measures as

K(0) = ¢ g2k 2-157
(0 = E 8,200 (2-157)
k(0 =5 1 g.2k) (2-158)
X T° k=0 *
ke () = L 5 g2t (2-159)
X T k=0 *

Wilcox [12] provides an algorithmic approach to the calculation of the

noise performance of the alpha-beta-gamma filter, assuming a zero mean

2

Gaussian measurement noise with variance = O -

T f e -
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the calculation of KX(O), let

o
|

b, = a,

O = B"'ZG’ b2 = Q+Y’B, b3 = 0

ao =1, a] = at+g8-3, az = 3+y-20-8, a3 = q-1

the calculation of Ki(o), let the a,’s remain the same and

i

= = jz:gél = iélll =
bo (B/T)s b] T ° b2 T b3 0

the calculation of Ki-(o), let the ai's remain the same and

by = by = (w/T2), by = (-2v/T%), by = 0

defining

K (0) = K, (0), K;(0) = Ky(0), Ks+(0) = K,(0),

then the noise response for each estimate is calculated by substituting

the appropriate values of a; and bi into

where

20BoQg - 2B, * aB0; - BQ;

Ky (0) = (2-160)

ao[(aoz'a32)°o - (aga-2,23)Q, + (aj,-2423)0Q,

1 = 2(bgby + byby + bybs)
= 2(bgby + bb,)

3 = 2bgh;

o
"
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Ey =g+
Ep =ap + 2,
Qp = agFy - 335,

O
N
]

= a]Ez - azE]
Q, = (ay-a,)(E 2-E 2) +a, (a E,-a,E,)
3 1732 M 0 Y02 "371
It can be shown that as a, 8, and y approach zero the poles of the
characteristic equation approach one, which results in higher noise sup-

pression since the bandwidth decreases and the effective data smoothing

capability of the filtzi increases.

Performance Measures for the
Alpha-Beta-Gamma Filter

Simpson [4] and Neal [15] define two transient performance mea-
sures for the transient analysis of the alpha-beta-gamma filter. The
first transient performance measure is the unit-increment ramp response

used earlier in the analysis of the alpha-beta tracker,

sz = I [(unit-increment ramp) - (position ramp response)]2
n=0
(2-161)
Diz = I [(velocity of unit-increment ramp)
n=0

- (velocity ramp response)]2 (2162)

—ard  mmml e e




Do- =

X

thus,
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L3

t [(acceleration of unit ramp response (=0))

n=0

- (acceleration ramp response)]2

g, (3)(n-)72

™3

e 8

[n -
n=0 j=0

© n . 2
r [1- £ gg(3)n-j)]
n=0 Jj=0

n 112
£ g:(3)(n-3)]
n=0 =

J=0

(2463)

(2-164)

(2-165)

(2-166)

Similarly the transient performance measure (A2) due to a unit step in-

put of acceleration is defined, in the same manner, as the sum of the

squares of the

e wy
=
e

vice versa.

SR B RN AN pmamy e

errors arising from this input.

it

2 ®
-1z g (5)n-5)%2
0 2 2 jip X

1 2 . .
[n-5 & g:(i)(n-J)
0 2 o X

o[- %
= jso

28 - ala + 8 + % Y) =0

Therefore,

2]2

n
I gy (§)(n-3)%

(2-167)

(2-168)

(2169)

By numerical evaluation of these performance measures, Simpson
[4] derived an optimal relation between a, B, and y such that for a

given noise smoothing, the optimal transient response is achieved, and

(2-170)
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In a later paper, Neal [15] verified Simpson's relation analyt-
ically using a new approach [1] to linear estimation theory and also

derived an additional relation between «, B8, ¥y.

82 = 20y (2-171)

The preceding relations (2-170) and (2-171) provide a method of opti-
mally choosing two of the parameters of the alpha-beta-gamma tracking
filter thus simplifying the task of optimizing the tracker in a given
tracking environment.

The recursive nature of the alpha-beta-gamma filter makes it a
prime candidate for implementation on a digital computer. A flowchart

of the alpha-beta-gamma filter is given in Figure 2.5.
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‘ START )

INITIALIZE o, 8, AND y

INPUT xm(k)

xs(k-l) =0
xg(k=1) = 0
i's(k-l) =0

' P

xp(K) = x (k1) + TR (K)

ip(k) = is(k-l) + Ti's(k-l)

)

; xg(6) = x (k) + alx (K)-x (K)]
xg(k) = x, (k) + 8/T(xp(K)-x (k)]
| X ) = & (1) ¢ /Tl ()~ (K)2

—

Figure 2.5. Flowchart of the Alpha-Beta-Gamma Tracking Filter.
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III. THE TRI-STATE ADAPTIVE FILTER

Introduction

Three different tracking filters have been discussed in the pre-
vious chapter for implementation in a track-while-scan radar system.
These trackers are capable of providing optimum estimates of an air-
craft's position provided the dynamical models on which the tracking al-
gorithm are based, are accurate assumptions of the aircraft's true tra-
jectory. Unfortunately, due to the presence of radar measurement noise
and wind turbulence, no single dynamical model for the aircraft's tra-
jectory will be an accurate model throughout the period that the air-

craft is under track.

Tracking Filter Limitations

Although the alpha filter is the simplest tracker that has been
discussed, it provides the greatest noise smoothing performance. It is
based upon the assumption that the aircraft's position is not changing
with respect to time. The constant position model is applicable to the
azimuth or elevation tracking of an aircraft whose trajectory is radial
to the radar. The alpha filter is capable of tracking a constant posi-
tion target with less error than either the alpha-beta filter or the
alpha-beta-gamma filter, but because the alpha filter assumes a zero
target velocity, its ability to track a target undergoing a change in

position is impaired.

48
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The alpha-beta tracker is a second order tracking filter which is
designed to minimize the mean-square error in filtered position and ve-
Tocity, assuming no velocity change between data samples. Thus the alpha-
beta filter's capability to track severely maneuvering (accelerating)
targets is severelyv limited.

If the target is assumed to be maneuvering, its trajectory may be
modeled by a constant acceleration model with time varying position and
and velocity. This more generalized model of the target's trajectory
leads to the third order alpha-beta~gamma tracker which is capable of
providing good estimates of the target's position and velocity through-
out a maneuver. If, however, the target is not maneuvering, the alpha-
beta-gamma filter suffers a significant degradation in noise smoothing
performance compared to the simpler alpha-beta tracker (for constant

velocity traj ~tory) or alpha tracker (for constant position trajectory).

Selection of the Appropriate Filter

Since the state of the target's trajectory may change as a func-
tion of time and range, no single filter will provide accurate estimates
of the target's position and velocity throughout the tracking interval.
However, if a bank of three filters consisting of the alpha filter, the
alpha-beta filter, and the alpha-beta-gamma filter were operated in par-
allel with one another, accurate estimates of the target's position and
velocity would be available regardless of the changes in the target's
trajectory. Some type of adaptivity should be built into the filter bank
so that if no position change is detected then the estimate from the
alpha tracker, should be selected. If the target is ascertained to have

a constant velocity, then the estimate from the alpha-beta tracking
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filter should be selected. And if the target is undergoing a change in
velocity, then the estimate from the alpha-beta-gamma tracker, should
be selected.
Detection of a change in the target's trajectory and the selection
of the appropriate filter output may be accomplished by monitoring the
variance in the smoothed position estimates of both the alpha filter and

the alpha-beta filter.

Alpha Filter Output Variance as a
Basis for Filter Selection

If a constant position measurement of the form

xm(k) = X + n(k) (3-1)
where ,
xm(k) = radar position measurement at time kT
X = actual position at time kT (constant)
n(k) = zero mean Gaussian noise with variance = onz >

is the input to an alpha tracker, then from equation (2-34) the variance

in the smoothed position estimate is given by
var{xs(k)} 25— 0 . (3-2)

The input noise variance 0n2 is usually available, and if not, it can be
easily calculated. The variance in the smoothed position estimates of
the alpha filter can be approximated directly from the filter's output

by
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L
var{xs(k)} 2 % E [x (i) - E{xs(k)}]2 > (3-3)

i=0 S
where,

xs(i) = ith estimate of smoothed position
L = the integral number of samples over which the

variance in smoothed pesition is being calculated
Ex ()} = 1
S L

As long as constant position measurements of the form prescribed
in equation (3-1), are input to the alpha tracker, then the variance in
the smoothed position estimates, approximated by equation (3-3), will
remain less than or equal to the variance calculated via equation (3-2).
1f, however, radar measurements of a target undergoing a change in posi-
tion are input to the alpha tracker, the variance in the smoothed posi-
tion estimates, approximated by equation (3-3), wf]] exceed the expected
variance calculated via equation (3-2). Thus the variance in smoothed
position obtained from equation (3-2) may be used as a threshold to
determine if the alpha filter is capable of tracking the target. If the
variance in the smoothed position estimates, approximated by equation
(3-3), is less than the variance threshold calculated via equation (3-2),
then the alpha tracker's smoothed estimate of position is considered the
best estimate of the target's position and the velocity of the target is
assumed to be zero. If the varianc: of the alpha tracker's smoothed po-
sition estimates, approximated by equation (3-3), exceeds the variance

threshold obtained from equation (3-2), then the alpha tracker's smoothed
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estimate of position is rejected and the alpha-beta filter's smoothed es-
timates of position and velocity are examined to determine if they yield
a more accurate representation of the target's trajectory. When the
variance of the alpha tracker's smoothed output (3-3) drops below the

variance threshold (3-2), then the alpha filter's smoothed position es-

timate is once again considered a valid estimate of the target's position.

Alpha-Beta Filter Output Variance
as a Basis tor Filter Selection

In a similar manner, if the radar measurement of a constant velo-

city target is input to an alpha-beta filter it has the form of

xm(k) x(k) + vkT + n(k) , (3-4)

where,

x_ (k) = radar position measurement at time kT

m
x(k) = actual position at time kT
v = velocity of target (constant)
T = sampling interval

Assuming an input as prescribed in (3-4), the variance expected in the

smoothed position estimate is

' 2
var{x_(k)} = [ 5?4_;_g§§-3a)] chz . (3-5)

Equation (3-£) is of course, based upon the previous relation given by
equation (2-91).

As with the alpha filter, the variance in the smoothed position
estimates of the alpha-beta filter can be approximated from the filter's

smoothed output by equation (3-3).
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As long as the target maintains a constant-velocity straight-line
trajectory, the variance in the alpha-beta filter's smoothed estimates
of position (3-3) will remain less than or equal to the expected vari-
ance in smoothed position calculated via equation (3-5). Since the
alpha-filter's estimate of position has been previously examined and
found to be inaccurate for a constant-velocity target trajectory, it is
assumed that the alpha-beta filter's smoothed estimates of position and
velocity best represent the true trajectory of the target.

If the target undergoes an acceleration, the variance in the alpha-
beta filter's smoothed position estimates, approximated by equation (3-3),
will exceed the variance threshold calculated in equation (3-6). Under
this condition, the alpha-beta filter's smoothed estimates of position
and velocity are deemed inaccurate and tracking control is transferred
to the higher order alpha-beta-gamma filter. Estimates of smoothed posi-
tion and smoothed velocity from the alpha-beta-gamma filter are used only
as long as the variances in the smoothed position estimates of the alpha
filter or alpha-beta filter exceed their variance thresholds, calcu-
lated via equations (3-2) and (3-5), respectively. If the variances in
the smoothed position estimates of both the alpha filter and the alpha-
beta filter drop below their respective variance thresholds during the
same sample interval, then track contral is transferred to the alpha fil-
ter since it provides a greater degree of noise smoothing than the other
two filters. A block diagram depicting the tracking system discussed in

the previous paragraphs is shown in Figure 3.1,
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Implementation of the Tri-State Adaptive
Tracking Filter

Examination of Fiqure 3.1 shows that the alpha, alpha-beta, and
alpha-beta-gamma tracking filters operate in parallel. Each filter gen-
erates its own estimates of smoothed position and smoothed velocity
based upon its implicit model of the target's trajectory. The smoothed
position estimates from the alpha filter and the alpha-beta filter are
stored in separate L-length shift registers. From the stored values of
the alpha filter's smoothed position estimates, the variance in the alpha
filter's smoothed position estimates is calculated via equation (3-3).

In a similar manner the variance in the alpha-beta filter's smoothed
position is calculated using the stored values of the alpha-beta filter's
smoothed position estimates. The calculated variances in the alpha fil-
ter and alpha-beta filterr smoothed position estimates are then compared
to their respective variance thresholds (calculated via (3-2) and (3-5)).
The appropriate filter output is then selected based upon the criteria
previously discussed. At the next sample interval, the new smoothed
position estimates are shifted into the shift registers and the variance
in smoothed position is recalculated for each of the two filters.

A flowchart depicting the operation of the tri-state adaptive
tracking algorithm is presented in Figure 3.2.

The implementation of the tri-state adaptive tracking filter, as a
FORTRAN IV subroutine, is given in the Appendix. The subroutine per-
forms azimuth tracking on an incoming aircraft. The inputs to the sub-
routine are the samnling interval T, the azimuth noise variance, the
range of the aircraft at each sample interval, and the radar's measure-

ment of lateral position in feet.
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Figure 3.2. Flowchart of the Tri-State Adaptive Tracking Filter.
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IV. SYSTEM SIMULATION

Introduction

This study investigates the application of a tri-state adaptive
filter in an automatic landing system for aircraft. The automatic Tand-
ing system under consideration is the Marine Air Traffic Control and
Landing System (MATCALS). The MATCALS utilizes an AN/TPN-22 track-while-
scan, electronically steerable microwave radar to produce raw digitized
measurements of the aircraft's vertical and lateral positions. This po-
sitional information is filtered and processed by a groundbased control-
ler which calculates the appropriate bank and pitch commands to correct
the aircraft's trajectory. The commands are then transmitted via a com-
munication link to the aircraft's autopilot to automatically land the
aircraft. This configuration is presented in Figure 4.1. A more de-
tailed discussion of the MATCALS is available in [16].

FORTRAN 1V programs have been written to simulate the F4J and A7E
aircraft dynamics, the F4J and A7E autopilots, the landing system con-
troller, and the AN/TPN-22 radar. The FORTRAN IV program listings are
given in [16]. Each of the aircraft simulations consists of two parts -

the lateral control system simulation and the longi‘udinal control system

simulation. The two control systems are uncoupled . ' are structurally
identical. The lateral control system of the F4J i .i be used to study
57
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the performance of the tri-state adaptive filter, since stability is
more difficult to obtain in this system than in the longitudinal control

system [17].

The F4J Control System

The lateral control system of the F4J automatic landing system is
modeled as a sampled data control system. The aircraft's lateral dynam-
ics and autopilot generate the analog signal y(t) (lateral position).
The AN/TPN-22 radar is modeled as an A/D converter, which converts the
continuous process y(t) into discrete measurements of position every T
seconds, where T, the sampling period, is selected to be 0.1 seconds.
The groundbased controller is modeled as a digital transfer function
which generates discrete bank commands, ¢{(k), and a zero order hold
which restructures the discrete bank commands into the continuous sig-
nals ¢(t). A block diagram of the lateral control system for the F4J

aircraft is given in Figure 4.2.

The F4J Lateral Guidance System

The F4J aircraft lateral dynamics are described by a set of sixth
order linear differential equations. The autopilot dynamics are given by
a set of third order differential equations. Thus, the lateral control
system is ninth order. In addition the lateral control system includes

three nonlinearities. The system equations are of the form

f

x(t) = Ax(t) + Bu(t) + Ef(t) (8-1)

y(t) = Cx(t) + Du(t) (4-2)

L e e S —_ - . R £ ol Wb NN e
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Figure 4.2.

Block Diagram of the F4J Lateral Control System.
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where the nonlinearities are simulated by the term Ef. The simulation of
the F4J aircraft's lateral dynamics and the dynamics of the autopilot is

discussed in detail in Reference [16].

The SPN-42 Digital Controller

The groundbased control unit for the F4J lateral control system is
the SPN-42 digital controller. The SPN-42 is described as a PID control-
ler. In this notation, P indicates proportional, I indicates integral,
and D indicates derivative. The SPN-42 digital controller is composed of
an a-g tracking filter, a differentiator, an integrator, four o filters,
and a floating limiter. A block diagram of the SPN-42 lateral control
system digital controller is presented in Figure 4.3, with all nonlinear-
ities omitted. A detailed description of the SPN-42 digital controller

is available in [17].

AN/TPN-22 Radar

The AN/TPN-22 phased array radar is utilized in the lateral control
system of the F4J aircraft to measure the lateral position of the air-
craft. In the measurement process a significant amount of noise is in-
troduced into the system such that the reported lateral position of the
aircraft is degraded. A model for simulating the noise associated with
the AN/TPN-22 radar is the ITT-Gilfillan AN/TPN-22 radar noise model
[18]. A block diagram of the radar noise simulation is given in Fig-
ure 4.4, The difference equation describing the AN/TPN-22 azimuth radar

noise is given by [17],

ae(n) = 0.382 ae(n-1) + 0.15 2s6(n-2) + 0.122 2s(n-3)
+ 0.0045 & (n-4) + v(n) (4-3)
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and,

measured angle (n) = a¢(n) + g(n) + target angle , (4-4)

where,

aé(n) = azimuth noise at the

g(n)

nth sample

azimuth granularity error sequence with standard

deviation, og = 0.148 mr

«
—_
pay ]
~—

[}

white noise sequence

°v2 = 0.320 mr2

The aircraft's normal touchdown point

radar center by:

Longitudinal X offset

Lateral Y offset

The target angle is given by:

Y +

_ -1
target angle = tan [ T

The lateral position of the aircraft,

with mean = 0.0 and variance,

on the runway is offset from the

762.9 feet
-178.1 feet

178.1
762.9 ] : (4-5)

measured by the radar, is given by

YR(n) = (X + 762.9) tan[measured angle (n)] - 178.1 (4-6)




e s

-y m—

V. SIMULATION RESULTS

Introduction

The feasibility of using the tri-state adaptive tracking filter in
the MATCALS may be studied by incorporating the tri-state adaptive filter
and the alpha-beta filter into the F4J lateral control system simulation
discussed in Chapter IV. The response of the F4J lateral control system,
using the alpha-beta filter to estimate the aircraft's position and ve-
Tocity, may then be compared to the control system's response using the
tri-state adaptive filter to estimate the aircraft's position and velo-
city. Block diagrams depicting the implementation of the alpha-beta
filter and the tri-state adaptive filter in the F4J lateral control sys-
tem are given in Figure 5-1 and 5-2, respectively.

For ease of reference, the lateral control system using the alpha-
beta filter to estimate the aircraft's position and velocity shall be
called the alpha-beta control system. Likewise, the lateral control
system using the tri-state adaptive filter to estimate the aircraft's
position and velocity shall be called the tri-state adaptive control

system.

Tracking System Comparison

Filter Parameters

The filter coefficients used to obtain the simulation results for
the alpha-beta control system and the tri-state adaptive control system

are given in Table 5-1. The filter coefficients for the alpha-beta
65
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control system were obtained from [17], and were found to provide the
optimal noise smoothing performance for a given maneuver following capa-
bility. For this reason, the alpha-beta stage of the tri-state adaptive
filter is identical to the filter used in the alpha-beta control system.
The filter coefficients for the alpha and alpha-beta-gamma stages of the
tri-state adaptive filter were determined experimentalily by making re-
petitive simulavion runs and selecting the coefficients which provided
the best noise smaothing performance (alpha-filter) and the best maneu-

ver following capability (alpha-beta-gamma filter).

Filter Frequency Response

A FORTRAN program from [19] was used to calculate the amplitude
and phase responses aof the alpha-beta filter and the three filters which
make up the tri-state adaptive filter. These frequency responses are
given in Figure 5-3 through Figure 5-€.

Control System Time Response with
a Given Initial Condition

The initial condition time responses of the alpha-beta control
system and the tri-state adaptive control system are given in Figure
5-7 and Figure 5-8.

The time responseé of the two lateral control systems were ob-
tained from simulation runs of the eighty seconds of the aircraft's
flight prior to touchdown. This corresponds to an initial range of
17,632 feet. The aircraft is initially assumed to be offset laterally
from the extended centerline of the runway by twenty feet. The lateral

velocity of the aircraft is initially assumed to be zero while the
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forward velocity of the aircraft is assumed to be a constant 220.39
feet per second. For the time response simulations, the wind and noise
disturbances were eliminated.

The time responses of the alpha-beta control system and the tri-
state adaptive control system may be evaluated by comparing the tran-
sient response of each system and the ability of each system to guide
the aircraft. The rise time and the time to peak provide a measure of
the transient responses of the lateral control systems. The rise time,
Tr’ is defined as the time required for the aircraft to reach the ex-
tended centerline of the runway. The time to peak, Tp, is defined as
the time required for the aircraft to reach its first peak. An idea of
how well the lateral control systems guide the aircraft may be obtained
by examining the percent overshoot and the time to settle for each sys-

tem. The percent overshoot for the lateral control system is given by

X
P.0. = £e2k » 100 (5-1)
IC
where xpeak is the magnitude of the first peak position of the aircraft,
and XIc is the magnitude of the initial position of the aircraft. The

time to settle is defined as the amount of time necessary for the con-
trol systems to settle the aircraft within 2% of its initial position of
twenty feet. These time response performance measures for the alpha-
beta control system and the tri-state adaptive control system are given

in Table 5-2.




5-2

TINE RESPONSE CHARACTERISTICS

ALPHA-EETA TRI-STATE
FILTCR CONTROL ADAPTIVE
SYSTEM COTRNOL. SYSTEM
TiME TO RISE, Tr 9.8 10.8
(seconds) ' .
P
{seconrds)
TIME TO SETTLE, T
S 56 56
(seconds)
PERCENT OF OVERSHOOT, P.O. _
36.75 32.3

(%)
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The results given in Table 5-2 reveal that the alpha-beta cantrol

system has a faster response than the tri-state adaptive control system,

but the tri-state adaptive control system does not overshoot as severely.

Tri-State Adaptive Control
System Performance

The performance of the tri-state adaptive tracking filter may best
be evaluated by comparing the resuits of a number of simulation runs of
the tri-state adaptive control system with the results of similar runs
of the alpha-beta control system. The characteristics of the system
responses cannot be obtained from one simulation. To obtain an accurate
statistical description, it is necessary to make many simulation runs

and to statistically average the results.

Monte Carlo Simulation Runs

One method of obtaining accurate statistical descriptions of the
two lateral control system responses is by making Monte Car’o runs. Each
of the Monte Carlo runs that are to be presented is determined from
twenty simulation runs. For each simulation run, the aircraft is ini-
tially assumed to be on the extended centerline of the runway at a
starting range of 17,632 feet. Prior to the start of each simulation
run, the aircraft is aséumed to have zero lateral velocity, and a con-
stant forward velocity of 220.39 feet per second. The forward velocity
of 220.39 fect per second results in a flight time of eighty seconds to
touchdown point. A1l lateral movements of the aircraft during the sim-
ulation runs are caused by wind turbulence or radar noise. The wind
turbulence and radar noise for each of the twenty simuylation runs have

the same statistical parameters; however, the random number generators
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in the wind turbulence and radar noise sources are started at different
values thus generating different number sequences for each simulation
run. It should be noted that each Monte Carlo run uses identical sets
of random number sequenceg.

For the purpose of analyzing the two control system responses as
a function of range, each simulation run is divided into four equal
time bins, each having a duration of twenty seconds. This corresponds
to four range bins, each having a length of 4408 feet.

Statistics are calculated to describe the system responses over
the appropriate range bin for each simulation run. The statistics for
each range bin are then averaged over the twenty simulation runs which
make up the Monte Carlo run. The results, as a function of range, for
the Monte Carlo runs with wind turbulence and radar noise included c.-e
given in Table 5-3. The statistics used to evaluate the alpha-beta con-
trol system and the tri-state adaptive control system are the mean
square lateral position error off the extended centerline of the runway
and the variance in position error off the extended centerline of the
runway. A listing of percent improvement of the tri-state adaptive
control system over the alpha-beta control system is included in the
Tables. Percent improvement is defined as

(My-Mr)
% Improvement = ITﬁ;:ﬂ;77§T x 100% (5-2)

where MA and MT are the mean square error of position off the extended

centerline of the runway for the alpha-beta control system and the tri-

state adaptive control system, respectively.
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Table 5-3 indicates that the tri-state adaptive control system
does not perform as well as the alpha-beta control system when radar
noise and wind turbulence is included in the simulation runs. Closer
scrutiny of Table 5-3 reveals that the tri-state adaptive control system
performs best only for bin 1 which corresponds to a range greater than
13,224 feet.

A possible reason for the inferior performance of the tri-state
adaptive control system may lie in the switching process between the
alpha and alpha-beta filter states of the tri-state adaptive filter.

As pointed out in Chapter 111, the alpha filter will provide excellent
smoothing of position measurements so long as the lateral velocity of
the aircraft is equal to zero. If the aircraft acquires a lateral velo-
city, then the alpha filter estimate will be in error. In order to
determine if the aircraft is acquiring a lateral velocity, the variance
in the smoothed position estimates of the alpha filter state must be
calculated as given in equation (3-3). This variance in smoothed posi-
tion is then compared to the variance threshold for the alpha filter
given by equation (3-2). If the variance in the alpha filter's smoothed
position estimates exceeds the threshold then the aircraft is assumed

to have acquired a lateral velocity and the output of the alpha-beta
filter should be selected. If, however, the variance in the alpha
filter's smoothed position estimates does not increase rapidly enough,
the tri-state adaptive filter will output the smoothed position estimate
of the alpha filter, even though the aircraft has acquired a lateral

velocity, and thus be in error.
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simulation runs with identical wind and radar noise. One run uses the
alpha-beta control system to quide the aircraft while the second run
uses the tri-state adaptive control system. Figure 5-9 provides a com-
parison of the performance of the two control systems under the identi-
cal effects of wind and radar noise. The tri-state control system is
seen to perform better than the alpha-beta control system, especially
during the first fifty seconds of the simulation run.

The improvement in performance that the tri-state adaptive control
system has over the alpha-beta control system is due to the tri-state
adaptive filter's more accurate estimates of velocity. Shown in Figure
5-10 is a comparison of the actual aircraft lateral velocity to the
alpha-beta filter estimates of velocity. A comparison of the actual
aircraft lateral velocity to the tri-state adaptive filter estimates is
shown in Figure 5-11. A tabular comparison of the mean square error
in the two filter's velocity estimates is given in Table 5-7. The tri-
state adaptive filter's ability to more accurately estimate thé'air-
craft’s lateral velocity is thz key to the improvement in the performance
of the tri-state adaptive control system over the alpha-beta control sys-

tem presently used in the system.
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VI. CONCLUSIONS

Three digital tracking filters, each based upon a different air-
craft dynamical model, were combined to form the tri-state adaptive
tracking filter. The selection of the appropriate filter output was
determined by the variance of the filters' smoothed position estimates.
The tri-state adaptive filter was implemented in the simulation of the
F4J lateral control system. The results given in Chapter V suggest that
the performance of the F4J lateral control system may be improved
through the use of a tri-state adaptive tracking filter. Since the F4J
longitudinal control system is structurally identical to the lateral
control system, the tri-state adaptive tracking filter may, in a similar
manner, provide an improvement in the performance of the longitudinal
control system.

The overall performance of the tri-state adaptive tracking filter
may be enhanced by selecting the parameters of each of the three compo-
nent filters in such a manner as to achieve a more complementary filter
response. Another modification which might improve the performance of
the tri-state adaptive fi]ter is the adjustment of the varijance thres-
holds of the alpha and alpha-beta filters. As was shown by the results
of the F4J lateral control system simulation, the frequency response of
the tri-state adaptive filter may be altered by the selection of the ap-

propriate variance thresholds.
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SUBROUTINE FILBNK (RADR)

COMMON/RANG/ RANGE

COMMON/FILCON/ SMP,SMV

DIMENSION SP1(8), SP2(8), DIF1(8), DIF2(8)

DATA SP1/8*0.0/,SP2/8*0.0/,D1F1/8*0.0/,D1F2/8*0.0/

CONVERT INPUT NOISE VARIANCE, VRP, FROM RADIANS TO FEET.
VRP=4,225E-07*(RANGE**2)
SET L, THE LENGTH OF THE SHIFT REGISTERS.

L=5
L2=L-1

TT=SAMPLE INTERVAL=.1 SEC.

Al IS THE POSITION SMOOTHING CONSTANT OF THE ALPHA FILTER.

A2 IS THE POSITION SMOOTHING CONSTANT OF THE ALPHA-BETA FILTER.

B2 IS THE VELOCITY SMOOTHING CONSTANT OF THE ALPHA-BETA FILTER.

A3 IS THE POSITION SMOOTHING CONSTANT OF THE ALPHA-BETA-GAMMA FILTER.

B3 IS THE VELOCITY SMOOTHING CONSTANT OF THE ALPHA-BETA-GAMMA FILTER.

G IS THE ACCELERATION SMOOTHING CONSTANT OF THE ALPHA-BETA-GAMMA FILTER.

RADR=RADAR MEASUREMENT OF AZIMUTH INPUT TO SUBROUTINE.
SP1{L)=L-LENGTH ARRAY CONTAINING THE LAST L-VALUES OF THE ALPHA
FILTER'S SMOOTH POSITION ESTIMATES.

SP2(L)-L LENGTH ARRAY CONTAINING THE LAST L-VALUES OF THE ALPHA-BETA
FILTER'S SMOOTH POSITION ESTIMATES.

SP3=ALPHA-BETA-GAMMA FILTER'S SMOOTH POSITION ESTIMATE.

SV1=ALPHA FILTER'S SMOOTH VELOCITY ESTIMATE .

SV2=ALPHA-BETA FILTER'S SMOOTH VELOCITY ESTIMATE.
SV3=ALPHA-BETA-GAMMA FILTER®S SMOOTH VELOCITY ESTIMATE.
SA3=ALPHA-BETA-GAMMA FILTER'S SMOOTH ACCELERATION ESTIMATE.

A1=0.15

A2=0.51
B2=(A2**2)/(2.0-A2)
A3=0.46864
B3=0.10136
G=0.000684

CALCULATE THE VARIANCE THRESHOLDS FOR THE ALPHA FILTER AND THE ALPHA-
BETA FILTER.

VOUT1=VARIANCE THRESHOLD OF THE ALPHA FILTER.

VOUT2=VARIANCE THRESHOLD OF THE ALPHA-BETA FILTER.

VOUT1=(A1/2.0-A1)*VRP
VOUT1=0.6*VOUT1
VOUT2=((2.*(A2**2)+B2*(2.-3.*A2))/ (A2*(4.-B2*A2)) ) *VRP
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SHIFT SMOOTH POSITION ESTIMATES IN SHIFT REGISTERS

OO0

D0 5> 1=1,
SP1(L+1-1)
SP2{L+1-1)
CONTINUE
START FILTERS AFTER TWQO MEASUREMENTS

IF (T.GF.0.2) GO TO 10

INITI?LIZE THE SMOOTHED VALUES OF POSITION, VELOCITY AND ACCELERATION
SP1(1)=0

SP2(1)=0

SP3=0

SVi=0

Sv2=0

SA3=0

C COMPUTE PREDICTED PQSITIONS AND VELOCITIES FOR THE THREE FILTERS

10 PP1=SP1(1)

PP2=SP2(1)+TT*SV2

PP3=SP3+TT*SV3

PV1=0

PV2=Sv2

PV3=SP3+TT*SA3

COMPUTE THE SMOOTHED ESTIMATES OF POSITION, VELOCITY AND ACCELERATION
FOR THE THREE FILTERS

SP1(1)=(1.-A1)*SPT+A1*SP1(1)

SP2(1)=PP2+A2*(RADR~PP2)

SP3=PP3+A3*(RADR-PP3)

SV1=0

SV2=PV2+(B2/TT)*(RADR-PP2)

SV3=PV3+(B3/TT)*(RADR-PP3)

SA3=SA3+C G/ (TT**2))*(RADR-PP3)

on
no

SP1(L-1)
SPI(L-T1)

[on BN o N & 4]

(e X ep]

CALCULATE THE MEAN OF THE ALPHA AND ALPHA-BETA FILTERS'
SMOOTHED POSITION.

OO

MSP1=0

MSP2=0

Do 20 I=1, L
MSP1=MSP1+SP1(1)
MSP2=MSP2+SP2(1)

20 CONTINUE

MSP1=MSP1/L
MSP2=1ASP2/L

CALCULATE THE VARIANCE IN SMOOTHED POSITION OF THE ALPHA
AND ALPHA-BETA FILTERS.

OOOO

DO 30 I=1, L

DIF1(I)=(SP1(I)-MSP1)**2

DIF2(1)=(SP2(I)-1SP2)**2
30 CONTINUE
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VSP1=0

VSP2=0

DO 40 I=1, L
VSP1=YSP1+D1F1 (1)
VSP2=VSP2+D1F2(1)
CONTINUE
VSP1=VSP1/L
VSP2=VSP2/L

IF THE VARIANCE IN SMOOTHED POSITION OF THE ALPHA FILTER IS LESS THAN
THE ALPHA FILTER'S VARIANCE THRESHOLD, THEN OUTPUT POSITION=SP1(1)
AND O TPUT VELOCITY=0

IF (VSP1.GT.VOUT1) GO TO 50
SMP=SP1(1)

SMV=0

RETURN

IF THE VARIANCE IN SMOOTHED POSITION OF THE ALPHA-BETA FILTER
IS LESS THAN THE ALPHA-BETA FILTER'S VARIANCE THRESHOLD, THEN OUTPUT
POSITION=SP2(1) AND OUTPUT VELOCITY=SV2.

IF (VSP2.GT.VOUT2) GO TO 60
SMP=SP2(1)

SMy=SV2

RETURN

IF THE SMOOTH POSITION ESTIMATES OF THE ALPHA FILTER AND THE ALPHA-
BETA FILTER ARE FOUND TO BE INACCURATE THEN OUTPUT POSITION=SP3 AND
OUTPUT VELOCITY=SV3.

SMP=5P3
SMV=SV3
RETURN
END







